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1. Introduction

Modular group Γ = PSL2(Z) consists of 2 × 2 matrices with integer entries and unit determinant, considered up to
overall sign. It has a presentation Γ = ⟨s, t | s3 = t2 = 1⟩, and is known to be isomorphic to the quotient of 3-braid group
B3 by its center Z ∼= Z. The kernel of the canonical homomorphism Γ → PSL2(Z2) ∼= S3 defines a congruence subgroup
Λ ⊂ Γ , also known as Γ (2):

Λ =


a b
c d


∈ SL2(Z) | a, d odd; b, c even


/{±1}.

There are isomorphisms Λ ∼= P3/Z ∼= F2, where P3 denotes the group of pure 3-braids and F2 is the free group with 2
generators.

Extended modular groups Γ̄ and Λ̄ are obtained by replacing the unit determinant condition with ad − bc = ±1. These
groups have the following presentations:

Γ̄ = ⟨r, s, t | r2 = s3 = t2 = (tr)2 = (sr)2 = 1⟩, (1)

Λ̄ = ⟨x, y, z | x2 = y2 = z2 = 1⟩ ∼= C2 ∗ C2 ∗ C2, (2)

where

t =


0 −1
1 0


, s =


0 −1
1 1


, r =


0 1
1 0


,

x = rsts =


−1 −2
0 1


, y = rt =


1 0
0 −1


, z = stsr =


1 0
−2 −1


.
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Fig. 1. Branch cuts and loops γx,y,z .

Note that Λ is isomorphic to the subgroup (of index 2) of Λ̄ containing words of even length in x, y, z. Hence, given a Λ̄
action on a set U and a point u ∈ U , the orbits Λ̄(u) andΛ(u) are simultaneously finite or infinite.

In this paper the last observation is used to classify algebraic solutions of the sixth Painlevé equation (see [1]):

d2w
dt2

=
1
2


1
w

+
1

w − 1
+

1
w − t


dw
dt

2

−


1
t

+
1

t − 1
+

1
w − t


dw
dt

+
w(w − 1)(w − t)

2t2(t − 1)2


(θ∞ − 1)2 −

θ2x t
w2

+
θ2y (t − 1)

(w − 1)2
+
(1 − θ2z )t(t − 1)

(w − t)2


. (PVI)

This is the most general ODE of the form w′′
= F(t, w,w′), with F rational in w, w′ and t , whose general solution has no

movable branch points and essential singularities. It can therefore be analytically continued to a meromorphic function on
the universal covering of P1

\{0, 1,∞}.
A result from Watanabe [2] suggests that, roughly speaking, any solution of PVI is either (a) algebraic or (b) solves a

Riccati equation or (c) cannot be expressed via classical functions. Known examples of algebraic solutions [3] turn out to be
related to various mathematical structures, including e.g. Frobenius manifolds [4], symmetry groups of regular polyhedra
[5,6], complex reflections [7], Grothendieck’s dessins d’enfants and their deformations [8–10]. A few families of non-classical
solutions have also been constructed in terms of Fredholm determinants, see [11,12].

In the case θx = θy = θz = 0 a full classification of algebraic solutions has been obtained by Dubrovin and Mazzocco [5].
Their approach, followed to someextent in thepresentwork, is basedon thedescription of PVI as the equationofmonodromy
preserving deformation of Fuchsian systems of the form

dΦ
dλ

=


Ax

λ− ux
+

Ay

λ− uy
+

Az

λ− uz


Φ, Aν ∈ sl2(C), (3)

where the poles uν are pairwise distinct, Aν are 2 × 2 matrices independent of λwith eigenvalues ±θν/2 and

Ax + Ay + Az =


−θ∞/2 0

0 θ∞/2


, θ∞ ≠ 0.

The fundamental matrix Φ(λ) is a multivalued analytic function on C\{ux, uy, uz}. Fix a basis of loops and branch cuts
in π1(P1

\{ux, uy, uz,∞},∞) as shown in Fig. 1. To each branch of a solution of the PVI equation corresponds a unique
(up to conjugation) triple of monodromy matrices (Mx,My,Mz) ∈ G3, G = SL2(C) of Φ(λ) w.r.t. the loops γx, γy, γz . One
consequence of isomonodromy is that analytic continuation of solutions of PVI induces an action of the pure braid group on
3 strings on the space of conjugacy classes of such triples (i.e. on the quotient M = G3/G of three copies of G by diagonal
conjugation by G). It extends to the standard Hurwitz action of the braid group B3 = ⟨βx, βz | βxβzβx = βzβxβz⟩ on G3.
Explicitly,

βx :

Mx,My,Mz


→

Mx,Mz,MzMyM−1

z


,

βz :

Mx,My,Mz


→

My,MyMxM−1

y ,Mz

.

Observe that βzβx acts on a representative triple

Mx,My,Mz


∈ M by a cyclic permutation. The center Z of B3 is

generated by (βzβx)
3 and therefore it acts on M trivially. This leads to an action of the modular group Γ ∼= B3/Z on M,

with
s :

Mx,My,Mz


→

Mz,Mx,My


, (4)

t :

Mx,My,Mz


→

Mz,My,MyMxM−1

y


(5)

in the above notation. The action of Γ̄ on M is obtained by adding the involution

r :

Mx,My,Mz


→

M−1

z ,M−1
y ,M−1

x


. (6)

Lemma 1. The transformations s, t, r : M → M, as given by (4)–(6), satisfy the defining relations (1) of the extended modular
group Γ̄ .

As a corollary, we obtain the restriction of the Γ̄ action to its level 2 subgroup Λ̄:
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Lemma 2. The generators x, y, z ∈ Λ̄ act on representative triples from M as follows:

x :

Mx,My,Mz


→

M−1

x ,M−1
y ,MxM−1

z M−1
x


,

y :

Mx,My,Mz


→

MyM−1

x M−1
y ,M−1

y ,M−1
z


, (7)

z :

Mx,My,Mz


→

M−1

x ,MzM−1
y M−1

z ,M−1
z


.

Proof. Both lemmas can be proved by direct calculation. �

Let us now describe the last action in more detail, introducing on M a suitable set of coordinates. Following [13], to a
point (Mx,My,Mz) ∈ M we associate a 7-tuple (px, py, pz, p∞, X, Y , Z) ∈ C7 given by

px = TrMx, py = TrMy, pz = TrMz, p∞ = Tr

MzMyMx


, (8)

X = Tr

MyMz


, Y = Tr (MzMx) , Z = Tr


MxMy


. (9)

Naive dimension of the quotient M is equal to 6 and thus it is not surprising that the above monodromy invariants are not
all independent — there is a constraint

XYZ + X2
+ Y 2

+ Z2
− ωXX − ωYY − ωZZ + ω4 = 4, (10)

where

ωX = pxp∞ + pypz, ωY = pyp∞ + pzpx, ωZ = pzp∞ + pxpy, (11)

ω4 = p2x + p2y + p2z + p2
∞

+ pxpypzp∞. (12)

Remark 3. Boalch [7] refers to an equation equivalent to (10) as ‘Fricke relation’. In the context of Painlevé VI, it was first
obtained by Jimbo in [14], p.1140.

Remark 4. Four quantities (8) are related to PVI parameters by

pν = 2 cosπθν, ν = x, y, z,∞. (13)

Remaining three parameters X , Y , Z satisfying the Jimbo–Fricke relation (10) can be generically thought of as giving two PVI
integration constants.

The Λ̄ action (7) is defined for any group G. That G = SL2(C) in our case leads to important simplifications, in particular
TrM = TrM−1 for any M ∈ G. Monodromy parameters (8) are then fixed by the induced action of Λ̄, and quadratic
functions (9) transform according to the following:

Lemma 5. The induced action of the generators x, y, z ∈ Λ̄ on the parameters (9) is

x(X, Y , Z) = (ωX − X − YZ, Y , Z) ,
y(X, Y , Z) = (X, ωY − Y − ZX, Z) , (14)
z(X, Y , Z) = (X, Y , ωZ − Z − XY ) .

Proof. Using again that forM ∈ SL2(C) one has TrM = TrM−1 and alsoM + M−1
= TrM · 1we find for example

x(X) = Tr

M−1

y MxM−1
z M−1

x


= Tr


MyMxMzM−1

x


= pxp∞ − Tr


MyMxMzMx


= pxp∞ − YZ + Tr


MyM−1

z


= pxp∞ + pypz − X − YZ .

Proof of the other relations follows in a similar manner. �

Remark 6. After this work has been completed, we became aware of two recent papers [15,16], where the group Λ̄ was
introduced into Painlevé VI context in a way similar to ours and in particular its action (14) on monodromy invariants
has been computed (cf. relations (2.10)–(2.12) in [15] and formula (37) in [16]). We also note another interesting recent
preprint [17] on algebraic PVI solutions.

Idea of classification. Finite branch (in particular, algebraic) solutions of Painlevé VI necessarily lead to finite orbits of the
P3/Z ∼= Λ action on the space M of conjugacy classes of monodromy. Classification of such orbits is equivalent to finding
all finite orbits of the action (7) of the extended modular group Λ̄. Finally, the orbit Λ̄(m), m ∈ M can be finite only if the
corresponding orbit of the induced Λ̄ action (14) on C3 is finite.

Remark 7. One usually obtains explicit algebraic solution curves from monodromy by applying Jimbo’s asymptotic for-
mula [14] (or an appropriate modification of it) and computing sufficiently many terms in the Puiseux expansions of so-
lutions near singular points. Another extremely useful tool, especially for solutions of high degree, are Kitaev’s quadratic
transformations [18,19].
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In the next section, we classify all finite orbits of the action (14) (Theorem 1). It then turns out that the resulting
7-tuples ofmonodromy invariants completely determineΛ-orbits inM except in the casewhenMx,y,z can be simultaneously
transformed into the upper triangular form. In Section 3, we give a complete (up to parameter equivalence) list of Painlevé VI
solutions with finite branching. All of them are algebraic with one possible exception of Picard solutions; in that way our
explicit computation confirms a recent result by Iwasaki [20].

Somewhat unexpectedly for the authors, the solutions corresponding to all possible finiteΛ-orbits have already appeared
in various papers [8,7,21–23,4,5,24,6,9,10]. However, four of them (solutions 13, 24, 43 and 44 below) were published with
misprints, which are fixed in the present paper.

2. Finite orbits of Λ̄

2.1. Orbit graphs

Our main subject in this section is the Λ̄-action (14) which we consider as an action on C3 by fixing the parameters
ω = (ωX , ωY , ωZ ). To any orbit O of this action we associate a 3-colored (pseudo)graphΣ(O) as follows:

• the vertices ofΣ(O) represent distinct points r = (X, Y , Z) ∈ O,
• two vertices a, b ∈ Σ(O) are connected by an undirected edge of color x, y or z if x(a) = b (resp. y(a) = b or z(a) = b),
• if a point a ∈ Σ(O) is fixed by the transformation x, y or z, we assign to it a self-loop of the corresponding color.

In fact Σ(O) is a Schreier coset graph as its vertices can be identified with the cosets of the stabilizer of any point in O.
Also observe that the structure of (14) imposes a number of restrictions onΣ(O), in particular it forbids multiple edges and
simple cycles with only one edge of a given color.

Example 8. Set ω = (0, 1, 1) and consider the orbit of the point r = (−1, 1, 1). It consists of 5 points with coordinates
given below along with the orbit graph.

Point X Y Z
1 −1 1 1
2 0 1 1
3 0 1 0
4 0 0 0
5 0 0 1

This orbit does not split under the action of non-extended modular groupΛ. The same result is immediate for any Λ̄-orbit
whose graph contains at least one self-loop (recall thatΛ consists of even-length words in x, y, z).

2.2. Symmetries

Before we move on to the classification, it is useful to look at the symmetries of the space of orbits and their relation to
Bäcklund transformations for Painlevé VI.

Let T : M → M be an invertible map and let O ∈ M be an orbit of the Λ̄-action (7). If there exists an automorphism
ϕ ∈ Aut Λ̄ compatible with T (i.e. λ (T (u)) = T (ϕ(λ)(u)) for any λ ∈ Λ̄, u ∈ M), then T (O) is also an orbit, and we will say
that O and T (O) are equivalent. The symmetries to be considered below are generated by

• permutations: T : (Mx,My,Mz) → P(Mx,My,Mz), ϕ : (x, y, z) → P(x, y, z) with some P ∈ S3, where permutations act
on (x, y, z) in the standard way, and on the triples (Mx,My,Mz) as follows:

(123) :

Mx,My,Mz


→

Mz,Mx,My


,

(12)(3) :

Mx,My,Mz


→

M−1

y ,M−1
x ,M−1

z


.

• sign flips: T : (Mx,My,Mz) → (εxMx, εyMy, εzMz), εx,y,z = ±1, ϕ = id.

To any orbit O of the induced Λ̄ action (14) with parameters ω ∈ C3 therefore corresponds a number of equivalent orbits
whose parameter triples are obtained from ω by permutations and the action of the Klein four-group K4 (by sign changes of
two coordinates). By virtue of (10), all these orbits are characterized by the same value of ω4. To deal with nonequivalent
orbits, we quotient the parameter spaceC3 by K4oS3, although it is convenient not to fix the fundamental domain explicitly.

Bäcklund transformations (BTs) map solutions of a given Painlevé VI equation to solutions of the same equation with
different values of parameters θx,y,z,∞. The list of fundamental BTs for PVI is given in the table below, cf. [25]: Here we use
the standard notation δ =

θx+θy+θz+θ∞
2 and

2p =
t(t − 1)w′

w(w − 1)(w − t)
−


θx

w
+

θy

w − 1
+
θz + 1
w − t


.
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Table 1
Bäcklund transformations for Painlevé VI.

θx θy θz θ∞ w t ωX ωY ωZ ω4

sx −θx θy θz θ∞ w t ωX ωY ωZ ω4
sy θx −θy θz θ∞ w t ωX ωY ωZ ω4
sz θx θy −θz θ∞ w t ωX ωY ωZ ω4
s∞ θx θy θz 2 − θ∞ w t ωX ωY ωZ ω4

sδ θx − δ θy − δ θz − δ θ∞ − δ w +
δ
p t ωX ωY ωZ ω4

rx θ∞ − 1 θz θy θx + 1 t/w t ωX −ωY −ωZ ω4
ry θz θ∞ − 1 θx θy + 1 w−t

w−1 t −ωX ωY −ωZ ω4

rz θy θx θ∞ − 1 θz + 1 t(w−1)
w−t t −ωX −ωY ωZ ω4

Pxy θy θx θz θ∞ 1 − w 1 − t ωY ωX ωZ ω4
Pyz θx θz θy θ∞ w/t 1/t ωX ωZ ωY ω4

Remark 9. Five transformations sν (ν = x, y, z,∞, δ) generate affine Weyl group of type D4. Using these transformations,
one can construct shift operators

tx = sxsδ

syszs∞sδ

2
, ty = sysδ (sxszs∞sδ)2 ,

tz = szsδ

sxsys∞sδ

2
, t∞ = s∞sδ


sxsyszsδ

2
,

acting on the parameter space by simple translations:

θx θy θz θ∞
tx θx +2 θy θz θ∞
ty θx θy+2 θz θ∞
tz θx θy θz +2 θ∞
t∞ θx θy θz θ∞+2

Enlarging affine D4 by the Klein four-group K4 ∼= ⟨rx, ry, rz⟩ gives extended affine Weyl group D4. Full Okamoto affine
F4 action involves additional generators Pxy, Pyz changing the PVI independent variable t by Möbius transformations of P1

permuting 0, 1 and ∞.

Last four columns of Table 1 describe the action of BTs on parameters ωX,Y ,Z,4 defined by (11)–(13). Observe that all BTs
lead to equivalent points in the parameter space of orbits of the induced Λ̄ action (14). We now want to prove a converse
statement:

Proposition 10. GivenωX , ωY , ωZ , ω4 ∈ C, consider (11)–(13) as a system of equations for unknown θx,y,z,∞. Any two solutions
of this system are related by the affine D4 transformations introduced above.

Proof. Choose an arbitrary solution {θ0ν } (ν = x, y, z,∞) and denote p0ν = 2 cosπθ0ν . Introduce the auxiliary variable
ξ = p2x + p2y + p2z + p2

∞
. It satisfies the cubic equation

ξ 3 − a(ω)ξ 2 + b(ω)ξ − c(ω) = 0, (15)

where

a(ω) = ω4 + 16, b(ω) = ωXωYωZ − 4(ω2
X + ω2

Y + ω2
Z )+ 32ω4,

c(ω) = ω2
Xω

2
Y + ω2

Xω
2
Z + ω2

Yω
2
Z − 4ω4(ω

2
X + ω2

Y + ω2
Z )+ 16ω2

4.

Write ωX,Y ,Z,4 in terms of {p0ν}, then three roots of (15) are

ξ0 =

p0x
2

+

p0y
2

+

p0z
2

+

p0

∞

2
,

ξ± = 8


1 +


ν=x,y,z,∞

cosπθ0ν ±


ν=x,y,z,∞

sinπθ0ν


.

Applying sδ (or sδsx) to initial solution {θ0ν } gives a solution with ξ = ξ− (resp. ξ = ξ+). Therefore it is sufficient to prove
the proposition for solutions of (11)–(13) with ξ = ξ0.

Assume that at least two of three numbers ω2
X , ω

2
Y , ω

2
Z ∈ C are distinct, say ω2

Y ≠ ω2
Z . Substituting ξ = ξ0 into easily

verified relations

(px ± p∞)
4
− (ξ ± 2ωX )(px ± p∞)

2
+ (ωY ± ωZ )

2
= 0
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we find (px + p∞)
2

=

p0x + p0

∞

2 or

p0y + p0z

2, (px − p∞)
2

=

p0x − p0

∞

2 or

p0y − p0z

2. Also if ξ = ξ0 then

pxpypzp∞ = ω4 − ξ = p0xp
0
yp

0
zp

0
∞
, pxp∞ + pypz = ωX = p0xp

0
∞

+ p0yp
0
z ,

so that pxp∞ = p0xp
0
∞

or p0yp
0
z . But now if e.g. (px + p∞)

2
=

p0x + p0

∞

2, (px − p∞)
2

=

p0y − p0z

2, combiningwith the latter

result we find

p0x + p0

∞

2
=

p0y + p0z

2 (for pxp∞ = p0yp
0
z ) or


p0x − p0

∞

2
=

p0y − p0z

2 (for pxp∞ = p0xp
0
∞
). Therefore we

necessarily have
(px + p∞)

2
=

p0x + p0

∞

2
,

(px − p∞)
2

=

p0x − p0

∞

2
,

or


(px + p∞)

2
=

p0y + p0z

2
,

(px − p∞)
2

=

p0y − p0z

2
.

(16)

Choose a solution of (16) for px and p∞, then py and pz are unambiguously fixed by

(p∞ ± px)(py ± pz) = ωY ± ωZ = (p0
∞

± p0x)(p
0
y ± p0z )

(here we used that ω2
Y ≠ ω2

Z ). Hence there are 8 possible solutions for (px, py, pz, p∞), namely

(±p0x ,±p0y,±p0z ,±p0
∞
), (±p0y,±p0x ,±p0

∞
,±p0z ),

(±p0z ,±p0
∞
,±p0x ,±p0y), (±p0

∞
,±p0z ,±p0y,±p0x).

(17)

All of them can be obtained from

p0ν

using three affine D4 transformations


sxsyszs∞sδ

2, sδsxsysδszs∞ and sδsxszsδsys∞.
Now given {pν}, all possible solutions for {θν} are clearly related by the transformations {sν}, {tν}, see Remark 9.

Now let ω2
X = ω2

Y = ω2
Z . We can set for definiteness ωX = ωY = ωZ , then three out of four pν are equal. Denote this

common value by p and let p̃ be the fourth variable. Then

ωX = p(p + p̃), ω4 = 3p2 + p̃2 + p3p̃. (18)

Choose a solution (p0, p̃0) of (18). If ωX ≠ 0 then the only other solution such that 3p2 + p̃2 = ξ0 = 3

p0
2

+

p̃0
2 is given

by p = −p0, p̃ = −p̃0. Thus (px, py, pz, p∞) can only be a permutation of (p0, p0, p0, p̃0) or (−p0,−p0,−p0,−p̃0), which
yields at most 8 distinct solutions. As above, all these 4-tuples are related by


sxsyszs∞sδ

2, sδsxsysδszs∞ and sδsxszsδsys∞.
Now if ωX = 0 there are 2 possibilities: (1) p0 = 0, then the only other solution of (18) with the same value of ξ has the
form p = 0, p̃ = −p̃0; (2) p̃0 = −p0, then the only such solution is p = −p0, p̃ = p0. Clearly in both cases possible 4-tuples
(px, py, pz, p∞) are related by the affine D4 transformations. �

Remark 11. We have just shown that the map

ρ :
parameter
space of PVI


affine D4 → C4, [θx, θy, θz, θ∞] → (ωX , ωY , ωZ , ω4) (19)

is injective. Direct calculation shows that ρ is in fact a bijection. Moreover the same result holds true if we replace in (19)
affine D4 by the full affine F4 action and quotient the set of all triples (ωX , ωY , ωZ ) by K4 o S3 as described above.

Remark 12. It is more delicate to establish the equivalence of actual PVI solutions as BTs may become singular (w(t) =

0, 1, t or p = 0) in the way of transforming a given solution into another one with equivalent parameters.

2.3. 2-colored suborbits

Take a point r = (X, Y , Z) ∈ C3, fix ω ∈ C3 and consider the suborbit Oyz(r) of the Λ̄ action (14), generated from r by
two transformations y and z. Clearly all points of Oyz(r) have the same first coordinate X . We set Y0 = Y , Z0 = Z and label
remaining coordinates as shown on the suborbit graph below.

From (14) one finds a first order linear inhomogeneous difference equation
Yk+1
Zk+1


=


−1 −X
X X2

− 1


Yk
Zk


+


ωY

ωZ − XωY


. (20)

A straightforward computation gives
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Lemma 13. If X ≠ ±2, then the general solution of (20) is


Yk
Zk


=

1
sin λ/2

sin
(1 − 2k)λ

2
− sin kλ

sin kλ sin
(1 + 2k)λ

2

αβ


+
1

4 − X2


2ωY − XωZ
2ωZ − XωY


, (21)

where α, β are arbitrary constants and X = 2 cos λ/2. For X = ±2 we have


Yk
Zk


=


1 − 2k ∓2k
±2k 1 + 2k


α
β


+


ωY ± ωZ

8
−
(ωY ∓ ωZ )k

2
+ (ωY ∓ ωZ )k2

ωZ ± ωY

8
+
(ωZ ∓ ωY )k

2
+ (ωZ ∓ ωY )k2

 . (22)

Now assume that Oyz(r) is finite. We call the length of Oyz(r) the smallest positive integer N such that Yk+N = Yk,
Zk+N = Zk. Since x, y, z are involutions, the graph of any 2-colored finite suborbit can only be a simple cycle (as the length 2
yz-suborbit 2-3-4-5 in Example 8) or a line with a self-loop at each of its ends (as e.g. the length 3 xz-suborbit 1-2-3 or the
length 2 xy-suborbit 3-4 of the same example).

Lemma 14. Let N be the length of Oyz(r). If N > 1, then X = 2 cosπnX/N,where nX is an integer relatively prime to N satisfying
0 < nX < N.

Proof. Let X ≠ ±2 and impose Yk+N = Yk, Zk+N = Zk in (21). This gives sin Nλ
2 = 0, otherwise α = β = 0 and hence

N = 1. Therefore λ = 2πnX/N , nX ∈ Z and we can choose 0 < nX < N . Clearly nX and N are coprime; otherwise N is not
the smallest period of (21).

Now if X = ±2, then substituting Yk+N = Yk, Zk+N = Zk into (22) we find two conditions: (1) ωY ∓ ωZ = 0 and (2)
α ± β = 0. This in turn implies that Yk = const, Zk = const, i.e. Oyz(r) consists of a single point. �

Definition 15. Let O ⊂ C3 be an orbit of the Λ̄ action (14). A point r ∈ O is called good if it is not fixed by at least two of
three transformations x, y, z; otherwise we say that r is a bad point.

The case when the whole orbit consists of a single point is trivial. Hence below by a bad point we most often mean a point
fixed by two transformations. The orbit graph has then two self-loops at the corresponding vertex.

Example 16. The point 1 in Example 8 is bad, and the others are good.

Lemma 17. Let O ⊂ C3 be a finite orbit of (14). If r = (X, Y , Z) ∈ O is a good point, then

X = 2 cosπrX , Y = 2 cosπrY , Z = 2 cosπrZ , (23)

where rX,Y ,Z ∈ Q and 0 < rX,Y ,Z < 1. If r ∈ O is a bad point, fixed by y and z but not by x, then (23) still holds for Y and Z.

Proof. If r is not fixed by x, then the lengths of xz- and xy-suborbits of r are strictly greater than 1. If r is good the same is
true for each of the three 2-colored suborbits of r. Both statements then follow from Lemma 14. �

2.4. Main technical lemma

This subsection is devoted to a technical result to be extensively used later. Namely, wewant to find all rational solutions
of the equation

n
j=1

cos 2πϕj = 0 (24)

with n ≤ 6. Without loss of generality we assume that 0 ≤ ϕj < 1 and consider the n-tuples (ϕ1, . . . , ϕn) related by
permutations, transformations ϕj → 1 − ϕj and by the simultaneous change ϕj → 1/2 − ϕj as equivalent.

Definition 18. A rational n-tuple (ϕ1, . . . , ϕn) is called irreducible if it satisfies (24) and


j∈E cos 2πϕj ≠ 0 for any proper
subset E ⊂ {1, . . . , n}.

It then suffices to classify irreducible n-tuples (ϕ1, . . . , ϕn)with n ≤ 6.We first prove an auxiliary result concerning rational
solutions of the equation

n
j=1

e2π iϕj = 0. (25)

Again we can assume that 0 ≤ ϕj < 1 and consider the solution n-tuples up to permutations. Also note that the shift of all
ϕj by a common phase ϕ ∈ Q yields another solution.
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Lemma 19. All inequivalent irreducible (in the sense that


j∈E e
2π iϕj ≠ 0 for any proper subset E ⊂ {1, . . . , n}) rational

n-tuples with n ≤ 6 solving (25) are given by
• the 6-tuple

ϕ −
1
6
, ϕ +

1
6
, ϕ +

1
5
, ϕ +

2
5
, ϕ +

3
5
, ϕ +

4
5


, (26)

• the 5-tuple
ϕ, ϕ +

1
5
, ϕ +

2
5
, ϕ +

3
5
, ϕ +

4
5


, (27)

• the triple

ϕ, ϕ +

1
3 , ϕ +

2
3


and the pair


ϕ, ϕ +

1
2


,

with ϕ ∈ Q.

Proof. First part of the proof follows [26,5]. Write ϕk =
nk
dk
, where k = 1, . . . , n (1 < n ≤ 6) and dk, nk are either positive

coprime integers with dk > nk or nk = 0. Let p be a prime which is a divisor of at least one of d1, . . . , dn, and denote by δk,
lk, ck, νk the integers such that

dk = δkplk , nk = ckδk + νkplk ,

where δk is prime to p, 0 ≤ ck < plk ; ck is prime to p for lk ≠ 0, otherwise ck = 0. Then

ϕk = fk +
ck
plk
, fk =

νk

δk
.

Reordering ϕ1, . . . , ϕn so that l1 ≥ l2 ≥ · · · ≥ ln, we define the function

gk(x) =


e2π ifkxckp

l1−lk if ck ≠ 0,
e2π iϕk if ck = 0,

and the polynomial

U(x) =

n
k=1

gk(x). (28)

By construction gk

exp


2π i
pl1


= e2π iϕk , and (25) then implies that U


exp


2π i
pl1


= 0.

It is known since 1854 [27] that the polynomial

P(x) = 1 + xp
l1−1

+ x2p
l1−1

+ · · · + x(p−1)pl1−1

is irreducible in the ring of polynomials with coefficients in any extension of the form Q(ζ1, . . . , ζm), where ζj is a root of

unity of the order coprime with p. Since P

exp


2π i
pl1


= 0, then either (a) U(x) ≡ 0 or (b) U(x) ≢ 0 is divisible by P(x).

Case (a). The powers ckpl1−lk , appearing in the functions gk(x), are all equal. Otherwise one could write U(x) as a sum of at
least two polynomials equal to 0, and the irreducibility condition fails. Therefore lk = l1, ck = c1. Now it is sufficient to
subtract the common phase c1

pl1
from all ϕk to eliminate p from all denominators.

Case (b). Write U(x) = P(x)Q (x). The degree of U(x) is at most pl1 − 1, hence the degree of Q (x) is at most pl1−1
− 1. Then

the numbers NU and NQ of different powers of x in U(x) and Q (x)must be related by NU = pNQ . In particular, since in our
case NU ≤ 6, the prime p can only be equal to 2, 3 or 5.

The powers ckpl1−lk are all equalmodulo pl1−1 to s, where s is some integer independent of k, 0 ≤ s < pl1−1. Otherwise one
could collect powers corresponding to different s and write U(x) as a sum of at least two polynomials, each of them either
divisible by P(x) or vanishing identically. Corresponding n-tuple is then reducible, therefore we can only have NQ = 1,
Q (x) = αxs.

Suppose that l1 ≥ 2. Since c1 is prime to p, s is also prime to p and all n powers of x that appear in the functions gk(x) are
not divisible by pl1−1 and by p; in particular, all ck are non-zero. This in turn implies that lk = l1 for any k. Now ck = s+Nkpl1−1

and subtracting from all ϕk the common phase s
pl1

eliminates all higher (greater than 1) powers of p from the denominators.
It remains to consider l1 = 1, p = 2, 3 or 5:

(b.1) Let l1 = 1, p = 5, then n = 5 or 6. If n = 6, then from U(x) = αxsP(x) four out of six phases are equal, say
f1 = f2 = f3 = f4, and the remaining two satisfy e2π if5 + e2π if6 = e2π if1 . Setting f1 = 0 gives f5 =

1
6 , f6 = −

1
6 , then

(c1, c2, c3, c4, c5 = c6) is a permutation of (0, 1, 2, 3, 4) and we obtain the 6-tuple (26).
If n = 5, then f1 = f2 = f3 = f4 = f5, (c1, c2, c3, c4, c5) is a permutation of (0, 1, 2, 3, 4), which leads to the 5-tuple (27).

(b.2) Now every ϕk can only be equal to 0, 1
2 , ±

1
3 or ±

1
6 . Direct check shows that the only irreducible n-tuples with n ≤ 6

that can be built from such numbers are (equivalent to) the triple

0, 1

3 ,−
1
3


and the pair


0, 1

2


. �
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We now establish a similar classification of rational solutions of (24):

Lemma 20. Inequivalent irreducible rational n-tuples solving (24) with 1 < n ≤ 6 fall into one of the following classes:

• 13 nontrivial irreducible 6-tuples
1
11
,

2
11
,

3
11
,

4
11
,

5
11
,
1
6


, (VI1)

L
7

+
1
6
,
L
7

−
1
6
,
2L
7
,
3L
7
, 0,

1
3


, L = 1, 2, 3, (VI2)

L
7

+
1
6
,
L
7

−
1
6
,
2L
7
,
3L
7
,

1
10
,

3
10


, L = 1, 2, 3, (VI3)

L
7

+
1
6
,
L
7

−
1
6
,
2L
7

+
1
6
,
2L
7

−
1
6
,
3L
7
,
1
6


, L = 1, 2, 3, (VI4)

1
7
,
2
7
,
3
7
, 0,

1
5
,
2
5


,


1
7
,
2
7
,
3
7
,

1
15
,

4
15
,

3
10


,


1
7
,
2
7
,
3
7
,

1
10
,

2
15
,

7
15


, (VI5)

and an infinite family of the form
ϕ +

1
6
, ϕ −

1
6
, ϕ +

1
5
, ϕ +

2
5
, ϕ +

3
5
, ϕ +

4
5


, ϕ ∈ Q, (VIϕ)

• 7 nontrivial irreducible 5-tuples
0,

1
30
,
1
3
,
11
30
,
2
5


,


0,

1
5
,

7
30
,
1
3
,
13
30


, (V1)

L
7

+
1
6
,
L
7

−
1
6
,
2L
7
,
3L
7
,
1
6


, L = 1, 2, 3, (V2)

1
7
,
2
7
,
3
7
, 0,

1
3


,


1
7
,
2
7
,
3
7
,

1
10
,

3
10


, (V3)

and an infinite family of the form
ϕ, ϕ +

1
5
, ϕ +

2
5
, ϕ +

3
5
, ϕ +

4
5


, ϕ ∈ Q, (Vϕ)

• 4 nontrivial irreducible quadruples
0,

1
5
,
1
3
,
2
5


,


1
30
,
1
6
,
11
30
,
2
5


,


1
15
,

4
15
,

3
10
,
1
3


,


1
7
,
2
7
,
3
7
,
1
6


, (IV)

• 1 nontrivial irreducible triple
1
10
,

3
10
,
1
3


(III1)

and an infinite family of the form
ϕ, ϕ +

1
3
, ϕ −

1
3


, ϕ ∈ Q, (IIIϕ)

• an infinite family of pairs of the form
ϕ,

1
2

− ϕ


, ϕ ∈ Q. (IIϕ)

Proof. We use the same ideas, notations and conventions as in the proof of Lemma 19. One modification concerns the
functions gk(x)which are now defined by

gk(x) =

1
2


e2π ifkxckp

l1−lk
+ e−2π ifkxp

l1−ckpl1−lk


if ck ≠ 0,
cos 2πϕk if ck = 0.
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As gk

exp


2π i
pl1


= cos 2πϕk, one has again U


exp


2π i
pl1


= 0, so that either (a) U(x) ≡ 0 or (b) U(x) ≢ 0 is divisible by

P(x).

Case (a). All 2n powers ckpl1−lk , pl1 − ckpl1−lk , appearing in the functions gk(x), are simultaneously divisible or non-divisible
by p unless we have a reducible n-tuple. Since c1 is prime to p, they are actually non-divisible, which in turn gives lk = l1
for any k. Irreducibility then implies that ck can only be equal to c1 or pl1 − c1. In fact we can assume that ck = c1, as the
transformation ϕk → 1 − ϕk maps fk → −fk, ck → plk − ck. Now one has

U(x) =
1
2
xc1

n
k=1

e2π ifk +
1
2
xp

l1−c1
n

k=1

e−2π ifk = 0,

and, since c1 ≠ pl1 − c1 except in the trivial case p = 2, l1 = 1, the problem is reduced to the classification of rational
solutions of Eq. (25), given by Lemma 19.

Case (b). Set U(x) = P(x)Q (x), then by the same reasoning as above NU = pNQ . However, here NU ≤ 12, therefore p can be
equal to 2, 3, 5, 7 or 11.

2n powers ckpl1−lk , pl1 − ckpl1−lk are all equal modulo pl1−1 to s or pl1−1
− s, where the integer s does not depend on k,

0 ≤ s < pl1−1. Otherwise one could collect powers corresponding to different s and write U(x) as a sum of at least two
polynomials, each of them either divisible by P(x) or vanishing. Since pl1 − ckpl1−lk = −ckpl1−lk mod pl1−1, both terms
coming from a given gk(x) will appear in the same polynomial, and then the corresponding n-tuple is reducible. Hence NQ
can only be equal to 1 or 2.

If l1 ≥ 2, then all 2n powers of x that appear in the functions gk(x) are not divisible by p and therefore lk = l1 for any k.
Two powers ck and pl1 − ck are distinct modulo pl1−1 for all but a finite number of values of l1 and p. Indeed, if they are

the same, one has 2ck = 0 mod pl1−1. However, this is impossible for p ≥ 3, l1 ≥ 2 and for p = 2, l1 ≥ 3, since all ck are
prime to p. Let us now consider separately two cases:

(b.1) p ≥ 3, l1 ≥ 2 or p = 2, l1 ≥ 3;
(b.2) p = 3, 5, 7, 11, l1 = 1 or p = 2, l1 = 1, 2.

(b.1) When ck ≠ pl1 − ck mod pl1−1, we use NQ ≤ 2 to write the relation U(x) = P(x)Q (x) as two distinct equations
containing different (mod pl1−1) powers of x. Replacingϕk → 1−ϕk if necessary, one finds that both equations are equivalent
to the following one:

n
j=1

e2π ifkxck = αxsP(x), α ≠ 0. (29)

Assume that n = 6. It is impossible to satisfy (29) if p = 7, 11. For p = 5 four out of six phases are equal, say f1 = f2 = f3 = f4,
and the remaining two satisfy

(b.1.1) e2π if5 + e2π if6 = e2π if1 .

In addition we have ck = s + Nk · 5l1−1, where (N1,N2,N3,N4,N5 = N6) is a permutation of (0, 1, 2, 3, 4). Now applying
Lemma 19 to find rational solutions of (b.1.1) we see that resulting 6-tuples are of type (VIϕ).

For p = 3, up to permutations there are only three possibilities:

(b.1.2) e2π if1 = e2π if2 = e2π if3 + e2π if4 + e2π if5 + e2π if6 ,
(b.1.3) e2π if1 = e2π if2 + e2π if3 = e2π if4 + e2π if5 + e2π if6 ,
(b.1.4) e2π if1 + e2π if2 = e2π if3 + e2π if4 = e2π if5 + e2π if6 ≠ 0.

Finally, for p = 2 one should have one of the following:

(b.1.5) e2π if1 = e2π if2 + e2π if3 + e2π if4 + e2π if5 + e2π if6 ,
(b.1.6) e2π if1 + e2π if2 = e2π if3 + e2π if4 + e2π if5 + e2π if6 ≠ 0,
(b.1.7) e2π if1 + e2π if2 + e2π if3 = e2π if4 + e2π if5 + e2π if6 ≠ 0.

In each of these cases the problem is reduced to Lemma 19. The 6-tuples we obtain at the end turn out to be reducible or
belong to the family (VIϕ).

Other possibilities (n = 3, 4, 5) can be treated in a similar manner. They lead to 5-tuples of type (Vϕ) and triples of type
(IIIϕ).

(b.2) We first consider the case when the denominator of every ϕk (k = 1, . . . , n) is not divisible by 7 and 11:

Lemma 21. Inequivalent irreducible n-tuples solving (24) with 3 ≤ n ≤ 6 such that every dk (k = 1, . . . , n) is a divisor of
22

· 3 · 5 = 60 are given by
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• 6-tuples:
0,

1
30
,
1
5
,
11
30
,
2
5
,
2
5


,


0,

1
30
,

7
30
,
1
3
,
11
30
,
13
30


,


0,

1
5
,
1
5
,

7
30
,
2
5
,
13
30


,

1
60
,

1
60
,
13
60
,

7
20
,
23
60
,

5
12


,


1
60
,

1
20
,
11
60
,
23
60
,
23
60
,

5
12


,


1
60
,
11
60
,
13
60
,
13
60
,

5
12
,

9
20


,

1
12
,

7
60
,
17
60
,
19
60
,
19
60
,

7
20


.

• 5-tuples:
0,

1
5
,
1
5
,
2
5
,
2
5


,


1
60
,
11
60
,
13
60
,
23
60
,

5
12


,


1
30
,
1
6
,

7
30
,
11
30
,
13
30


,

0,
1
30
,
1
3
,
11
30
,
2
5


,


0,

1
5
,

7
30
,
1
3
,
13
30


.

• quadruples:
0,

1
5
,
1
3
,
2
5


,


1
30
,
1
6
,
11
30
,
2
5


,


1
15
,

4
15
,

3
10
,
1
3


.

• triples:
0,

1
3
,
1
3


,


1
60
,
19
60
,

7
20


,


1
30
,

3
10
,
11
30


,


1
20
,
17
60
,
23
60


,

1
15
,

4
15
,
2
5


,


1
10
,

3
10
,
1
3


.

Proof. Direct (e.g., Mathematica) computation. Notice that all obtained 6-tuples, first three 5-tuples and all but the last
triple belong to the infinite families (VIϕ), (Vϕ) and (IIIϕ), respectively. �

The case p = 11, l1 = 1 is possible only for n = 6. We have NQ = 1, degQ = 0, hence Q (x) = α, NU = 11, degU = 10
and, consequently, one can choose l1 = · · · = l5 = 1, l6 = 0, ck = k (k = 1, . . . , 5), c6 = 0. This gives the irreducible
6-tuple (VI1).

Remaining case p = 7, l1 = 1 is possible only for n = 4, 5, 6. Similarly to the above, NQ = 1, degQ = 0, Q (x) = α,
NU = 7, degU = 6, and in addition for all k = 2, . . . , n either lk = 1 or ck = 0. For n = 6 one then has four possibilities:

• (c1, c2, c3 = c4) is a permutation of (1, 2, 3), c5 = c6 = 0; this gives f1 = f2 = 0 and

e2π if3 + e2π if4 = 2 cos 2π f5 + 2 cos 2π f6 = 1. (30)

Recall that f1, . . . , f6 are rational numbers with denominator which is a divisor of 60. Using Lemma 21 to classify the
appropriate solutions of (30), one finds that the only irreducible 6-tuples obtained in this way are given by (VI2) and
(VI3).

• (c1, c2 = c3, c4 = c5) is a permutation of (1, 2, 3), c6 = 0; then

f1 = 0, e2π if2 + e2π if3 = e2π if4 + e2π if5 = 2 cos 2π f6 = 1,

which leads to the family of irreducible 6-tuples (VI4).
• (c1, c2, c3 = c4 = c5) is a permutation of (1, 2, 3), c6 = 0; then f1 = f2 = 0 and

e2π if3 + e2π if4 + e2π if5 = 2 cos 2π f6 = 1.

All 6-tuples arising here turn out to be reducible.
• (c1, c2, c3) = (1, 2, 3), c4 = c5 = c6 = 0, which implies f1 = f2 = f3 = 0 and

2 cos 2π f4 + 2 cos 2π f5 + 2 cos 2π f6 = 1. (31)

Using again Lemma 21 to find irreducible solutions of (31), we obtain 3 irreducible 6-tuples (VI5).

For n = 5, there are two possibilities:

• (c1, c2, c3 = c4) is a permutation of (1, 2, 3), c5 = 0; this implies f1 = f2 = 0 and

e2π if3 + e2π if4 = 2 cos 2π f5 = 1,

so that we find 3 irreducible 5-tuples (VI2).
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• (c1, c2, c3) = (1, 2, 3), c4 = c5 = 0, hence f1 = f2 = f3 = 0 and

2 cos 2π f4 + 2 cos 2π f5 = 1.

This gives 2 irreducible 5-tuples (V3).

Finally, for n = 4 we should have (c1, c2, c3) = (1, 2, 3), c4 = 0 and, therefore, f1 = f2 = f3 = 0, 2 cos 2π f4 = 1, which
leads to the fourth irreducible quadruple in (IV). This concludes the proof of Lemma 20. �

Remark 22. The classification of irreducible rational solutions of (24) with n ≤ 4 is essentially equivalent to Lemma 1.13
in [5]. In fact we will see shortly that this partial result is already sufficient to find all finite Λ̄ orbits with ω2

X ≠ ω2
Y ≠ ω2

Z .
Its extension to n = 5, 6 is needed to treat the case when ω ∈ C3 is fixed by some of the K4 o S3 transformations.

2.5. Bounds on suborbit lengths

Let O ⊂ C3 be a finite orbit of the induced Λ̄ action (14). We choose an arbitrary 2-colored suborbit Oyz ⊂ O (i.e. the
suborbit generated from a given point by two transformations y and z), denote its length by N and label the points of Oyz as
in Section 2.3.

Throughout this subsection we assume that N > 1. Denote X = 2 cos λ/2, then by Lemma 14 one has λ = 2πrX ,
rX = nX/N , where nX ∈ Z is prime to N and we choose 0 < nX < N . Lemma 13 implies in addition that Yk, Zk (k = 0, 1, . . . ,
N − 1) are given by (21).

When the graph of Oyz is a simple cycle, it contains 2N points and all of them are good. Then by Lemma 17 for k = 0,
. . . ,N − 1 we have

Yk = 2 cosπrYk , Zk = 2 cosπrZk , rYk , rZk ∈ Q, 0 < rYk , rZk < 1. (32)

IfΣ(Oyz) is a line with self-loops at the ends, then there are N distinct points. While two endpoints can in principle be bad,
the other N − 2 points are good so that their coordinates satisfy (32).

Lemma 23. Two distinct vertices of Σ(Oyz) characterized by the same coordinate Y (or Z) are necessarily connected by an edge
of color z (resp. y).

Proof. Let (X, Y , Z) be an arbitrary point in O. Since ωX,Y ,Z,4 are fixed by the Λ̄ action, the quantity

XYZ + X2
+ Y 2

+ Z2
− ωXX − ωYY − ωZZ = const = 4 − ω4

is an orbit invariant. Computing this invariant for two distinct points (X, Y , Z), (X, Y , Z ′) in Oyz we find Z ′
= ωZ − Z −XY =

z(Z). �

Remark 24. In the simple cycle case, Lemma 23 implies that Yk ≠ Yk′ , Zk ≠ Zk′ for k ≠ k′ where k, k′
= 0, . . . ,N − 1.

Similarly, in the line case for any k there exists at most one k′
≠ k such that Yk = Yk′ (or Zk = Zk′ ).

Lemma 25. The coordinates {Yk}, {Zk} satisfy the following identities:

for N even, nX odd:

Yk + Yk+N/2 = p+ + p−,
Zk + Zk+N/2 = p+ − p−,

(33)

for N odd, nX even: Yk + Zk+(N−1)/2 = p+, (34)

for N odd, nX odd: Yk − Zk+(N−1)/2 = p−, (35)

where k = 0, . . . ,N − 1 and p± =
ωY ±ωZ
2±X .

Proof. Straightforward substitution of (21) into (33)–(35). �

Proposition 26. If N is even and at least one of two parameters ωY , ωZ is different from 0, then N ≤ 10.

Proof. When at least one of ωY , ωZ differs from 0, at least one of p+ ± p− is also non-zero. Assume for definiteness that
p+ + p− ≠ 0 and consider the first equation in (33). It implies that for any k, k′

= 0, . . . ,N − 1 one has

Yk + Yk+N/2 = Yk′ + Yk′+N/2 ≠ 0. (36)

First assume that the graph of Oyz is a simple cycle. All Yk are then distinct and have the form (32). Hence (36) reduces to
an equation of type (24) with n = 4, whose rational solutions have been classified in Lemma 20. We now consider different
types of solutions to maximize the number Nc of possible unordered couples


Yk, Yk+N/2


of the form (32), characterized by

the same value of Yk + Yk+N/2:
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Fig. 2. Three possible graphs for N = 12, 14.

• Splitting of the rational solution quadruple into two (not necessarily irreducible) pairs is possible only for k′
= k or

k′
= k + N/2, therefore one should not take such solutions into account when computing Nc (here we used that

p+ + p− ≠ 0 !).
• Assume that Yk0 = 0 for some k0, then for any k one has Yk + Yk+N/2 = Yk0+N/2. This is an equation of type (24) with

n = 3. By Lemma 20, if Yk0+N/2 ≠ ±1, ±2 cosπ/5, ±2 cos 2π/5, the only possible couple different from

0, Yk0+N/2


is

2 cosπ(rYk0+N/2 + 1/3), 2 cosπ(rYk0+N/2 − 1/3)


and therefore Nc
= 2. When Yk0+N/2 = ±1, the only compatible couple is


±2 cosπ/5,∓2 cos 2π/5


so that again

Nc
= 2.
Finally, for (a) Yk0+N/2 = ±2 cosπ/5 and (b) Yk0+N/2 = ±2 cos 2π/5 one has Nc

= 3 as in both cases we have three
compatible couples:
(a)

0,±2 cosπ/5


,

±1,±2 cos 2π/5


,

±2 cos 2π/15,±2 cos 8π/15


;

(b)

0,±2 cos 2π/5


,

∓1,±2 cosπ/5


,

±2 cosπ/15,±2 cos 11π/15


.

• If there is no Yk equal to zero, the solution quadruple can only be equivalent to one of the last 3 quadruples in (IV) (first
quadruple is excluded because Yk ≠ ±2). Direct check then shows that for any choice of


Yk, Yk+N/2


there is only one

compatible couple, i.e. Nc
= 2.

Since the maximal possible value of Nc is 3, even length N of the simple cycle cannot exceed 6.
When the graph of Oyz is a line, the same reasoning shows that N ≤ 14, otherwise the number of distinct compatible

couples

Yk, Yk+N/2


satisfying (32) is greater than 3. We now want to improve this bound to N ≤ 10 using that for

N = 12, 14 the number of such couples is 3 and therefore Y -coordinates of good points should give (a) or (b) above.
In Fig. 2 we show three possible graphs and label each vertex by its Y -coordinate. Third diagram (iii) can in fact be

immediately excluded, since in this case 2Y2 = Y1 + Y3 = Y0 + Y4 but no couple in (a) or (b) contains two equal cosines. To
exclude the remaining two cases, use that from (20) follows a 2nd order difference equation for {Yk}:

Yk+2 + (2 − X2)Yk+1 + Yk = 2ωY − XωZ .

It implies in particular that for both (i) and (ii) we should have

X2
− 1 =

Y4 − Y1

Y3 − Y2
. (37)

Since (Y1, Y4) and (Y2, Y3) are necessarily given by two couples from (a) or (b), the RHS of (37) can only take one of 12 values

ε1(
√
5 + 2ε2), ε1(15 + 6ε2

√
5)ε3/2, ε1,2,3 = ±1.

Possible values of the LHS also belong to an explicitly defined finite set: recall that X = 2 cosπnX/N , where nX = 1, 3,
5, 9, 11 or 13 for N = 14 and nX = 1, 5, 7 or 11 for N = 12. Now it is easy to check that the LHS and the RHS of (37) never
match, and thus the lengths N = 12, 14 are forbidden. �

Proposition 27. If N is odd and ω2
Y ≠ ω2

Z , then N ≤ 9.

Proof. The condition ω2
Y ≠ ω2

Z guarantees that both p+ and p− are non-zero. Assuming for definiteness that nX is odd, one
finds from (35)

Yk − Zk+(N−1)/2 = Yk′ − Zk′+(N−1)/2 ≠ 0.
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Fig. 3. Line of odd length, ωY = ωZ .

We can now use the same approach as in the previous proof. One difference is that here wemaximize the number of ordered
couples


Yk, Zk+(N−1)/2


of the form (32) characterized by the same value of Yk − Zk+(N−1)/2. This maximal number is equal

to 6 (twice the maximal Nc), therefore by Lemma 23 simple cycles of length N ≥ 7 and the lines of length N ≥ 15 are
forbidden.

The lengths N = 11, 13 are excluded similarly to the above, since in this case Y - and Z-coordinates of good points take
only a finite number of explicitly defined values. Straightforward computation shows that possible values of X determined
from (20) never match X = 2 cosπnX/N . �

Remark 28. In the proof of Proposition 27 we used only that p− ≠ 0. Therefore the bound ‘‘odd N ≤ 9’’ also holds for
ωY = ωZ ≠ 0 when nX is even and for ωY = −ωZ ≠ 0 when nX is odd.

Next we study the case ωY = ωZ , nX odd, where the relation (35) gives just Yk = Zk+(N−1)/2. For ωY = −ωZ , nX
even the upper bound for N is the same by symmetry; recall that e.g. the transformation ωX → −ωX , ωY → −ωY ,
(X, Y , Z) → (−X,−Y , Z) for all (X, Y , Z) ∈ O yields an orbit equivalent to O.

Proposition 29. Let N and nX be odd and let ωY = ωZ ≠ 0. If the graphΣ(Oyz) is a line, then the only possible values of N are
3, 5, 7, 9, 11, 15 and 21.

Proof. The suborbit graph for odd N is presented in Fig. 3. Each vertex is labeled by its coordinates (Y , Z). For ωY = ωZ one
has p− = 0, hence (35) implies in particular that for the center point Z = Y .

Let us denote ωY = ωZ = ω and X = 2 cosπrX , Y = 2 cosπrY , Y ′
= 2 cosπrY ′ etc. From the relations

Y + Y ′
+ XY = ω = Y + Z ′

+ XY ′

one finds an equation of type (24) with n = 6:

cosπrY ′ + cosπ(rX − rY )+ cosπ(rX + rY ) = cosπrZ ′ + cosπ(rX − rY ′)+ cosπ(rX + rY ′). (38)

We assume that N ≥ 7, then rX,Y ,Y ′,Z ′ ∈ Q by Lemma 17.
General idea of the proof is to obtain the restrictions on rX from Lemma 20. Not all solutions listed in Lemma 20 are

of interest here because the arguments of cosines in (38) are not all independent. Five entries in the solution 6-tuple, say
ϕ1 . . . ϕ5, should satisfy
(a) ε1ϕ1 + ε2ϕ2 + ε3ϕ3 + ε4ϕ4 ∈ Z for some choice of ε1,2,3,4 = ±1.
(b)ε3ϕ3 − ε4ϕ4 = 2ε5ϕ5 (mod Z) for the same ε3,4 and some ε5 = ±1.

Remark 30. In many cases below, the number of possible solutions for rX is rather large and their complete description
becomes too cumbersome. However, since rX = nX/N and N is odd, in practice it is easy to determine admissible values of
N by simply looking at odd integers that can appear in the denominator of rX . The reader should keep in mind that probably
not all such admissible values do actually occur. For clarity, the valuesN = 3, 5 (not satisfying the above assumptionN ≥ 7)
will not be omitted in the course of this shortcut computation.

First assume that the solution of (38) is equivalent to one of the 6-tuples (VI1)–(VIϕ):
(VI1) In this 6-tuple, 1/6 clearly corresponds to rZ ′ in (38), otherwise conditions (a) and (b) cannot be simultaneously

satisfied. Hence the only possible odd denominator of rX is 11.
(VI2) Considering the sum and the difference of any two elements in (VI2), one readily concludes that the only possible

odd denominators of rX are 3, 7 and 21.
(VI3)Condition (a) fails unless 1/10 and 3/10 correspond to rY ′ and rZ ′ or vice versa. In both cases, however, (b) is violated.
(VI4) Possible N are 3, 7, 21 by the same argument as in (VI2).
(VI5)With the second and the third 6-tuple condition (a) always fails. With the first 6-tuple it can be satisfied only if 1/5

and 2/5 correspond to rY ′ and rZ ′ or vice versa, but then (b) is violated.
(VIϕ) Taking the sum and the difference of any two elements (meant to be rX ± rY ′ ) we see that odd divisors of the

denominator of either rX or rY ′ can only be 3, 5, 15. However, in the second case ϕ becomes fixed so that admissible N are
again 3, 5, 15.

Reducible 6-tuples consisting of one 5-tuple from (V1)–(Vϕ) and one zero cosine (we will say that the solution is of type
‘‘V1,2,3,ϕ+I’’) can be treated in a completely similarmanner, leading toN = 3, 5, 7, 15, 21. These values ofN are also the only
admissible ones for the solutions of type ‘‘IV + IIϕ ’’, where the solution 6-tuple splits into one of the irreducible quadruples
(IV) and a pair of the form (IIϕ). Solutions of type ‘‘III1 + III1’’ and ‘‘III1 + IIϕ + I’’ lead to N = 3, 5, 15, and those of type
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‘‘III1 + IIIϕ ’’ to N = 3, 5, 9, 15. There remain three types of possible rational solution 6-tuples:
(1) ‘‘IIIϕ + IIψ + I’’;
(2) ‘‘IIϕ + IIψ + IIµ’’;
(3) ‘‘IIIϕ + IIIψ ’’.

Case (1). We first study the case when (38) contains at least one zero cosine (in particular, this includes (1)). There are four
inequivalent possibilities:

(1.1) Set Y ′
= 0, then from (38) follows XY = Z ′. This equation clearly reduces to (24) with n = 3 and ϕ1,2,3 ∈ Q, hence its

solutions are described by Lemma 20. Solutions equivalent to (III1) can lead only to N = 3, 5, 15, and it remains to consider
solutions of type ‘‘IIIϕ ’’ and ‘‘IIϕ + I’’.

(1.1.1) Solution of XY = Z ′ has the form (IIIϕ) only if X = ±1 (i.e. N = 3) or Y = ±1. In the latter case Z ′
= ±X and

ω = ±(1 + X). Now computing Y ′′
= ω − Y ′

− XZ ′ we find cosπrY ′′ = ± (cosπrX − cos 2πrX − cosπ/3). By virtue of
Lemma 17, for N ≥ 9 one has rY ′′ ∈ Q. We can thus apply Lemma 20 to the last relation. Irreducible quadruples (IV) lead to
N = 3, 5, 7, 15, solutions of type ‘‘III1 + I’’ to N = 5, and solutions of type ‘‘IIIϕ + I’’ and ‘‘IIϕ + IIψ ’’ to N = 3.

(1.1.2) Now consider solutions of XY = Z ′ containing at least one zero cosine. Note that Z ′
≠ 0 for N ≥ 7, since by

(35) Yk = Zk+(N−1)/2 and we have already put Y ′
= 0. One can therefore assume that rY = rX ± 1/2 (mod 2Z),

Z ′
= 2 cosπ(2rX ± 1/2). Computation of Y ′′ then gives

cosπrY ′′ = cosπ(2rX ± 1/2)− cosπ(3rX ± 1/2). (39)

If N ≥ 9, one can apply to (39) Lemma 20. Solutions (III1) and (IIIϕ) can lead only to N = 3, 5 and N = 3, 5, 15 correspond-
ingly. Since Y ′′

≠ 0, the only possible N for solutions of type ‘‘IIϕ + I’’ is 3. As a consequence, from now on we can assume
that Y ′

≠ 0.

(1.2) Suppose that Z ′
= 0. Here we will use two relations of the form (24). The first one, with n = 5, is merely (38) with

Z ′
= 0:

Y ′
+ XY = XY ′. (40)

Recall that we can restrict our attention to solutions of (40) of 2 types: ‘‘IIϕ + IIψ + I’’ and ‘‘IIIϕ + IIψ ’’. The second equation,
with n = 4, comes from the computation of Y ′′,

Y ′′
= Y + XY . (41)

Assume thatN ≥ 9 to guarantee rY ′′ ∈ Q and consider rational solutions of (41) givenby Lemma20. It is easy to check that the
quadruples equivalent to (IV) can only lead to N = 3, 5, 7, 15, 21, while for solutions of type ‘‘III1 + I’’ one has N = 3, 5, 15.

Next we examine solutions of (41) of type ‘‘IIIϕ + I’’. Since Y , Y ′′
≠ 0 it can be assumed that rY = rX ± 1/2 (mod 2Z)

and then the triple (IIIϕ) becomes

cosπrY ′′ = cosπ(rX ± 1/2)+ cosπ(2rX ± 1/2),

giving N = 3, 9. Finally, for solutions of type ‘‘IIϕ + IIψ ’’, since Y ≠ Y ′′, we may write

Y ′′
= 2 cosπ(rY + rX ), Y + 2 cosπ(rY − rX ) = 0.

Second relation implies that rX = 2rY + 1 (mod 2Z) (remember that X ≠ ±2). Substituting this into (40), one finds

cosπrY ′ − cosπrY − cos 3πrY + cosπ(2rY + rY ′)+ cosπ(2rY − rY ′) = 0. (42)

(1.2.1) Now consider solutions of (42) of type ‘‘IIϕ + IIψ + I’’. Note that Y , Y ′
≠ 0. Furthermore cos 3πrY = 0 implies N = 3,

therefore it may be assumed that cosπ(2rY − rY ′) = 0, i.e. rY ′ = 2rY ± 1/2 (mod 2Z). Then (42) transforms into

cosπ(2rY ± 1/2)− cosπrY − cos 3πrY + cosπ(4rY ± 1/2) = 0.

We are looking for rational solutions of the last relation that have type ‘‘IIϕ + IIψ ’’, hence the only admissible values of N are
3 and 5.

(1.2.2) Consider a solution of (42) of type ‘‘IIIϕ + IIψ ’’ and take into account the following comments:

• cosπrY and cos 3πrY cannot belong simultaneously to (IIψ ) because then the denominators of rY and rX would not have
odd divisors. They can neither belong simultaneously to (IIIϕ) unless N = 3. Therefore we may assume that cosπrY and
cos 3πrY are divided between (IIIϕ) and (IIψ ).

• cosπ(2rY ± rY ′) cannot belong simultaneously to (IIψ ) as there is no enough place. It they are both in (IIIϕ) then either
N = 3 or Y ′

= ±1. In the latter case, since Y ′ belongs to (IIψ ), one can only have N = 3, 9. Hence it may be assumed that
cosπ(2rY ± rY ′) are divided between (IIIϕ) and (IIψ ), and in particular Y ′ belongs to (IIIϕ).
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Then we are left with two inequivalent possibilities:
cosπrY ′ − cosπrY + cosπ(2rY − rY ′) = 0 (IIIϕ)
cos 3πrY = cosπ(2rY + rY ′). (IIψ )

(1.2.2.1)

From the second equation one finds either Y ′
= Y (forbidden) or rY ′ = −5rY (mod 2Z). But then the first equation

transforms into cos 5πrY + cos 7πrY − cosπrY = 0, which implies N = 3, 9.
cosπrY ′ − cos 3πrY + cosπ(2rY + rY ′) = 0 (IIIϕ)
cosπrY = cosπ(2rY − rY ′). (IIψ )

(1.2.2.2)

Again from the second equation follows either Y ′
= Y or rY ′ = 3rY (mod 2Z). In the latter case the substitution into the

first equation gives cos 5πrY = 0, hence the only admissible N is 5.
(1.3) Set cosπ(rX − rY ) = 0. This implies rY = rX + ε1/2 (mod 2Z), ε1 = ±1 and our initial equation (38) transforms into

cosπrY ′ + cosπ(2rX + ε1/2) = cosπrZ ′ + cosπ(rX − rY ′)+ cosπ(rX + rY ′). (43)

(1.3.1) We first study solutions of (43) of type ‘‘IIϕ + IIψ + I’’. All cases when Y ′
= 0 or Z ′

= 0 have been considered above.
Moreover cosπ(2rX + ε1/2) = 0 would lead only to even N , therefore it can be assumed that cosπ(rX − rY ′) = 0, i.e. rY ′ =

rX +ε2/2 (mod 2Z), ε2 = ±1. Now Y ≠ Y ′ implies that ε2 = −ε1. Setting e.g. rY = rX +1/2, rY ′ = rX −1/2 in (43) one finds

cosπ(rX − 1/2)+ cosπ(2rX + 1/2) = cosπrZ ′ + cosπ(2rX − 1/2).

Since we are looking for solutions of type ‘‘IIϕ + IIψ ’’ of this equation and since Y ′
≠ Z ′, the only possible N is equal to 3.

(1.3.2) Next consider solutions of type ‘‘IIIϕ + IIψ ’’. It can be assumed that cosπ(rX ± rY ′) do not belong simultaneously to
(IIψ ), as this would lead to X = 0 (N = 2) or Y ′

= 0 (case studied above).
Wemay further assume that they are not simultaneously in (IIIϕ), because one would then have N = 3 or Y ′

= ε2, where
ε2 = ±1. In the latter case (43) would transform into

ε2 cosπ/3 + cosπ(2rX + ε1/2) = cosπrZ ′ + ε2 cosπrX .

Since solutions of this equation should have type ‘‘IIϕ + IIψ ’’ and since Y ′
≠ Z ′, one concludes that N = 3.

(1.3.2.1) Let cosπrY ′ be in (IIψ ), then we may write (43) as
cosπ(2rX + ε1/2) = cosπrZ ′ + cosπ(rX + rY ′), (IIIϕ)
cosπrY ′ = cosπ(rX − rY ′). (IIψ )

The second equation implies that rX = 2rY ′ (mod 2Z). Substituting this into the first equation one finds cosπ(4rY ′ +ε1/2) =

cosπrZ ′ + cos 3πrY ′ , therefore N can only be equal to 3, 7, 21.
(1.3.2.2) Let cosπrY ′ be in (IIIϕ) and let cosπ(2rX + ε1/2) be in (IIψ ). Then one can write

cosπrY ′ = cosπrZ ′ + cosπ(rX − rY ′), (IIIϕ)
cosπ(2rX + ε1/2) = cosπ(rX + rY ′), (IIψ )

and it follows that possible values of N are 3, 7, 21. Similarly if both cosπrY ′ and cosπ(2rX + ε1/2) are in (IIIϕ), one finds
N = 3, 5, 9, 15.
(1.4) Finally suppose that cosπ(rX − rY ′) = 0. Then rY ′ = rX + ε1/2 (mod 2Z), ε1 = ±1 and from (38) follows the relation

cosπ(rX + ε1/2)+ cosπ(rX − rY )+ cosπ(rX + rY ) = cosπrZ ′ + cosπ(2rX + ε1/2). (44)

It is not necessary to examine solutions of (44) of type ‘‘IIϕ + IIψ + I’’ because all cases when Y ′
= 0, Z ′

= 0 or
cosπ(rX ± rY ) = 0 have already been considered above, and cosπ(2rX ± 1/2) = 0 gives N = 2. Hence we may restrict our
attention to solutions of type ‘‘IIIϕ + IIψ ’’.

• cosπ(rX + ε1/2) and cosπ(2rX + ε1/2) cannot be simultaneously in (IIψ ) unless N = 3 and in (IIIϕ) unless N = 3, 9.
Therefore one can assume that they are divided between (IIIϕ) and (IIψ ).

• If both cosπ(rX ± rY ) belong to (IIIϕ), then either N = 3 or Y = ε2, ε2 = ±1, but in the latter case (44) becomes

cosπ(rX + ε1/2)+ ε2 cosπrX = cosπrZ ′ + cosπ(2rX + ε1/2).

The solution of this equation should be of type ‘‘IIϕ + IIψ ’’. Since Y ′
≠ Z ′ and by the above assumption cosπ(rX + ε1/2)

and cosπ(2rX + ε1/2) are not in the same pair, this can happen only if cosπ(rX + ε1/2) + ε2 cosπrX = 0, i.e. odd N
are impossible. Thus we can assume that cosπ(rX ± rY ) in (44) are also divided between (IIIϕ) and (IIψ ) and in particular
cosπrZ ′ belongs to (IIIϕ).
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We then have two inequivalent possibilities:
cosπ(rX + rY ) = cosπrZ ′ + cosπ(2rX + ε1/2), (IIIϕ)
cosπ(rX + ε1/2)+ cosπ(rX − rY ) = 0. (IIψ )

(1.4.1)

From the second equation one finds that either Y = 0 or rY = 2rX + ε1/2 + 1 (mod 2Z). In the former case, substitution
into the first equation gives admissible values N = 3, 9, while for the latter N = 3, 5, 15.

cosπ(rX + ε1/2)+ cosπ(rX + rY ) = cosπrZ ′ , (IIIϕ)
cosπ(rX − rY ) = cosπ(2rX + ε1/2). (IIψ )

(1.4.2)

Here from (IIψ ) follows that either rY = −rX−ε1/2 (mod 2Z) (forbiddenbecause thenY = Y ′) or rY = 3rX+ε1/2 (mod 2Z).
In the latter case first equation implies that N = 3, 5, 9, 15.
Case (2). Now we come back to the initial equation (38) and consider its solutions of type ‘‘IIϕ + IIψ + IIµ’’.

It can be assumed that cosπ(rX ±rY ′) are not in the same pair, as otherwise X = 0 (N = 2) or Y ′
= 0 (already considered).

Similarly, if both cosπ(rX ± rY ) are in the same pair, then Y = 0 and one can write
cosπrY ′ = cosπ(rX − rY ′), (IIϕ)
cosπrZ ′ + cosπ(rX + rY ′) = 0. (IIψ )

Since X ≠ ±2, from (IIϕ) follows that rX = 2rY ′ (mod 2Z) and then Z ′
= −2 cos 3πrY ′ . Moreover Y = 0 implies that

ω = Y ′, therefore Y ′′
= −XZ ′, i.e.

cosπrY ′′ = cosπrY ′ + cos 5πrY ′ .

For N ≥ 9 we can apply Lemma 20 to the last relation. Its solutions of type (III1) and (IIIϕ) lead to N = 3, 5 and N = 3, 9
correspondingly. Since Y ′, Y ′′

≠ 0 (because we already have Y = 0), solutions of type ‘‘IIϕ + I’’ are possible only if N = 5.
Hence we can assume that cosπ(rX ± rY ) are divided between two different pairs. These cannot be the same as for

cosπ(rX ± rY ′), otherwise the third pair would give Y ′
= Z ′. Therefore we may assume one of the pairs in (38) to be

cosπ(rX − rY ) = cosπ(rX − rY ′). (IIϕ)

Since Y ≠ Y ′, the last relation gives rY = 2rX − rY ′ (mod 2Z). Now for the remaining two pairs there are two inequivalent
possibilities:
(2.1) If cosπrY ′ and cosπ(rX + rY ) are in the same pair, then

cosπrY ′ + cosπ(3rX − rY ′) = 0, (IIψ )
cosπrZ ′ + cosπ(rX + rY ′) = 0. (IIµ)

From (IIψ ) one finds that either N = 3 or cosπ(3rX − 2rY ′)/2 = 0. In the latter case, compute ω:

ω = Y + Y ′
+ XY = 4 cosπrX/2 cosπ(3rX − 2rY ′)/2 = 0,

i.e. the initial assumption ω ≠ 0 does not hold.
(2.2) If cosπrY ′ and cosπ(rX + rY ′) are in the same pair, then

cosπrY ′ = cosπ(rX + rY ′), (IIψ )
cosπrZ ′ = cosπ(3rX − rY ′). (IIµ)

First equation implies that rX = −2rY ′ (mod 2Z). Therefore X = 2 cos 2πrY ′ , Y = 2 cos 5πrY ′ , Z ′
= 2 cos 7πrY ′ . Let us

compute ω = Y + Y ′
+ XY :

ω = 2 cosπrY ′ + 2 cos 3πrY ′ + 2 cos 5πrY ′ + 2 cos 7πrY ′ .

The computation of Y ′′
= ω − Y ′

− XZ ′ now gives

cosπrY ′′ = cos 3πrY ′ + cos 7πrY ′ − cos 9πrY ′ . (45)

ForN ≥ 9,we can apply to (45) Lemma20. Solutions of type (IV), ‘‘III1+I’’ and ‘‘IIIϕ+I’’ can lead only toN = 3, 5, 7, 9, 15, 21.
Since Y ′′

≠ Z ′, solutions of type ‘‘IIϕ + IIψ ’’ are possible only if N = 5.
Case(3). It remains to consider solutions of (38) of type ‘‘IIIϕ + IIIψ ’’.
(3.1) If both cosπ(rX ± rY ′) appear in the same triple, then N = 3 or Y ′

= ±1. In the latter case, (38) transforms into

± cosπ/3 + cosπ(rX + rY )+ cosπ(rX − rY ) = cosπrZ ′ ± cosπrX . (46)

The solution of (46) should have type ‘‘IIIϕ + IIψ ’’, and moreover cosπrX belongs to (IIψ ). If the second cosine in (IIψ ) is
cosπ/3, then N = 3. If cosπrZ ′ ± cosπrX = 0, then from (IIIϕ) again follows N = 3. Therefore it can be assumed that

± cosπ/3 + cosπ(rX + rY ) = cosπrZ ′ , (IIIϕ)
cosπ(rX − rY ) = ± cosπrX . (IIψ )
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Fig. 4. Labeling ofΣ(Oyz) in Lemma 31.

Since Y ≠ ±2, the second equation implies that rY = 2rX + 1/2 ∓ 1/2, but then from the first equation follows N = 3, 9.
Hence from now on we assume that cosπ(rX ± rY ′) belong to different triples.
(3.2) If cosπ(rX ± rY ) are in the same triple, then N = 3 or Y = ±1. In the latter case (38) can be rewritten as

cosπrY ′ = cosπrZ ′ + cosπ(rX + rY ′), (IIIϕ)
± cosπrX = cosπ(rX − rY ′). (IIψ )

Again from (IIψ ) follows rY ′ = 2rX + 1/2 ∓ 1/2, and (IIIϕ) then implies that N = 3, 5, 15. Therefore we assume in the
following that cosπ(rX ± rY ), as well as cosπrY ′ and cosπrZ ′ , are divided between the two triples.
(3.3) Without loss of generality we can now write (38) as

cosπrY ′ + cosπ(rX − rY )− cosπ(rX − rY ′) = 0, (IIIϕ)
cosπrZ ′ + cosπ(rX + rY ′)− cosπ(rX + rY ) = 0, (IIIψ )

(47)

or, in another form,
cosπrY ′ + 2 sin

π(2rX − rY − rY ′)

2
sin

π(rY − rY ′)

2
= 0, (IIIϕ)

cosπrZ ′ + 2 sin
π(2rX + rY + rY ′)

2
sin

π(rY − rY ′)

2
= 0. (IIIψ )

If sin π(rY −rY ′ )

2 ≠ ±
1
2 , then one should simultaneously have

sin
π(2rX − rY − rY ′)

2
=
ε1

2
, sin

π(2rX + rY + rY ′)

2
=
ε2

2
, (48)

where ε1,2 = ±1 (in fact ε2 = −ε1, otherwise Y ′
= Z ′). Eqs. (48) lead to N = 3, therefore we can assume that

sin
π(rY − rY ′)

2
=
ε3

2
, ε3 = ±1. (49)

Let us compute Y ′′
= Y + XY − XZ ′ using (47) and (49). After some simplifications one finds

cosπrY ′′ = cosπ(rX + rY )+ cosπ(rX − rY ′)+ ε3 sin
π(4rX + rY + rY ′)

2
. (50)

Relation (49) implies that rY = rY ′ + ε3/3 (mod 4Z) or rY = rY ′ + 5ε3/3 (mod 4Z). Similarly, the first relation in (47) gives
eitherN = 3 or rX = 2rY ′ +ε4/3 (mod 2Z), ε4 = ±1.We now substitute this into (50) and apply Lemma 20 (forN ≥ 9). So-
lutions of type (IV) and ‘‘III1+I’’ then lead to admissible valuesN = 3, 5, 7, 9, 15, 21 andN = 3, 5, 15 correspondingly,while
solutions of type ‘‘IIIϕ + I’’ and ‘‘IIϕ + IIψ ’’ give N = 3, 5, 9, 15 and N = 3, 9. This concludes the proof of Proposition 29. �

Lemma 31. Let N and nX be odd and let ωY = ωZ ≠ 0. If the graph Σ(Oyz) is a simple cycle and Oyz contains a point with
coordinate Z (or Y ) equal to 0, then the only possible values of N are 3, 5, 7, 9, 15, 21.

Proof. Analogously to the previous proof, let us label the vertices ofΣ(Oyz) by their coordinates (Y , Z), as shown in Fig. 4.
Because of the simple cycle assumption all points of Oyz are good, therefore all {Yk} and {Zk} have the form (32). It will be
assumed that N > 3, then by Lemma 23 four numbers Y , Y ′, Y ′′, Z ′ are distinct and non-zero (recall that Yk = Zk+(N−1)/2).

We now apply Lemma 20 to the relation

cosπrY + cosπrY ′ = cosπrZ ′ + cosπ(rX + rY ′)+ cosπ(rX − rY ′). (51)

Its solutions of type (Vϕ), (V1)–(V3), ‘‘IV + I’’ can lead only to N = 3, 5, 7, 15, 21.
The solutions of type ‘‘IIϕ+IIψ+I’’ are forbidden. Indeed, since Y , Y ′, Z ′

≠ 0, in this case one couldwrite cosπ(rX −rY ′) =

0, but then one of the pairs (IIϕ), (IIψ ) would give Y = Z ′ or Y ′
= Z ′ (impossible) or Y + Y ′

= 0 (excluded because then
ω = 0).

Next we consider solutions of type ‘‘III1 + IIϕ ’’. Since Y ′
≠ 0, two cosines cosπ(rX ± rY ′) cannot belong both to (IIϕ). They

can neither be simultaneously in (III1), as (IIϕ) would then give Y = Z ′ or Y ′
= Z ′ or Y +Y ′

= 0. Therefore it can be assumed
that cosπ(rX − rY ′) belongs to (IIϕ) and cosπ(rX + rY ′) is in (III1). Now if cosπrY ′ is in (III1), then admissible values of N are
3, 5, 15. If cosπrY ′ belongs to (IIϕ), then rX = 2rY ′ (mod 2Z). Substituting this into (III1), we obtain N = 5, 9, 15.
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Fig. 5. Labeling ofΣ(Oyz) in Proposition 32.

It remains to consider solutions of (51) of type ‘‘IIIϕ + IIψ ’’. By the same argument as above we can assume that
cosπ(rX − rY ′) is in (IIψ ) and cosπ(rX + rY ′) is in (IIIϕ).

Assume that cosπrY ′ is in (IIψ ). Then rX = 2rY ′ (mod 2Z) and the triple (IIIϕ) becomes

cosπrY = cosπrZ ′ + cos 3πrY ′ .

Therefore we can assume that rY = 3rY ′ ± 1/3 (mod 2Z), rZ ′ = 3rY ′ ± 2/3 (mod 2Z). Let us substitute these expressions
into an easily verified relation

cosπrY ′′ = cosπrY − cosπ(rX − rZ ′)− cosπ(rX + rZ ′). (52)

Its solutions of type (IV) and ‘‘III1 + I’’ lead to admissible values N = 3, 5, 7, 15, 21 and N = 3, 5, 15 correspondingly (in
fact this conclusion does not depend on any of our previous assumptions). Since Y , Y ′′

≠ 0, solutions of type ‘‘IIIϕ + I’’ give
N = 3, 5, 15. Finally, since Y ≠ Y ′′, solutions of type ‘‘IIϕ + IIψ ’’ are only possible for N = 3.

On the other hand, if cosπrY ′ belongs to the triple (IIIϕ) then, since cosπ(rX + rY ′) is also in (IIIϕ), we can set rX =

−2rY ′ + ε/3 (mod 2Z), ε = ±1, otherwise N = 3. Hence
(1) If cosπrY is the third cosine in (IIIϕ), then

Y = −2 cosπ(rY ′ + ε/3), Z ′
= −2 cosπ(3rY ′ − ε/3).

Now let us look at Eq. (52). When its solution has type ‘‘IIIϕ + I’’, it can be assumed that cosπ(rX − rZ ′) = 0, but then
N = 3, 5, 15. For solutions of type ‘‘IIϕ + IIψ ’’ we can write cosπrY = cosπ(rX − rZ ′), which leads to N = 3, 9.
(2) If cosπrY belongs to (IIψ ), then one finds

Y = 2 cosπ(3rY ′ − ε/3), Z ′
= 2 cosπ(rY ′ + ε/3).

In this case, solutions of (52) of type ‘‘IIIϕ + I’’ and ‘‘IIϕ + IIψ ’’ lead to admissible values N = 3, 9. �

Proposition 32. Let N and nX be odd and let ωY = ωZ ≠ 0. If the graphΣ(Oyz) is a simple cycle then the only possible values
of N are 3, 5, 7, 9, 11, 15, 21.

Proof. Let us start with the obvious relation Y + XZ = Y ′′
+ XZ ′ (see Fig. 5), written as

cosπrY + cosπ(rX + rZ )+ cosπ(rX − rZ ) = cosπrY ′′ + cosπ(rX + rZ ′)+ cosπ(rX − rZ ′). (53)

We can assume that this relation does not contain zero cosines. Indeed, the case when Y = 0 or Y ′′
= 0 is completely

described by Lemma 31. If cosπ(rX ± rZ ) = 0 or cosπ(rX ± rZ ′) = 0, then Z or Z ′ is equal to ±
√
4 − X2. Now recall that by

Lemma 23 in a simple cycle all {Zk} are distinct, therefore already for N ≥ 5 it will be possible to find a pair (Zk, Zk+1)which
does not contain prescribed two values ±

√
4 − X2 (Assumption 1).

Next we exclude solutions of type (VI1)–(VI5), ‘‘IV + IIϕ ’’, ‘‘III1 + III1’’, ‘‘III1 + IIIϕ ’’, as they can lead only to N = 3, 5,
7, 9, 11, 15, 21 (note that solutions of (53) satisfy a condition similar to (a) in the proof of Proposition 29). Then there remain
three types of possible solution 6-tuples:

(1) ‘‘IIϕ + IIψ + IIµ’’;
(2) ‘‘IIIϕ + IIIψ ’’;
(3) ‘‘VIϕ ’’.

Case (1). It can be assumed that two cosines cosπ(rX ± rZ ) (and cosπ(rX ± rZ ′)) are divided between two different pairs.
Otherwise Z = 0 (resp. Z ′

= 0) and one obtains restrictions on N from Lemma 31. The pairs cannot be the same in both
cases because then Y = Y ′′. Therefore we can set one of the pairs to be

cosπ(rX − rZ ) = cosπ(rX − rZ ′). (IIϕ) (54)

Since Z ≠ Z ′, one has rZ ′ = 2rX − rZ (mod 2Z). For the remaining two pairs, there are two inequivalent possibilities:
cosπrY + cosπ(rX + rZ ) = 0, (IIψ )
cosπrY ′′ + cosπ(3rX − rZ ) = 0. (IIµ)

(1.1)

Here from Y + Y ′
+ XZ = Z + Z ′

+ XY ′ follows that either N = 3 or Y ′
= −2 cosπ(rX − rZ ). In the latter case, however,

computing ω = Y + Y ′
+ XZ we find forbidden value ω = 0.

cosπrY = cosπ(3rX − rZ ), (IIψ )
cosπrY ′′ = cosπ(rX + rZ ). (IIµ)

(1.2)
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Substituting these relations into Z̃ + XY = Z ′
+ XY ′ and Z ′′

+ XY ′′
= Z + XY ′, one obtains

cosπrZ̃ + cosπ(4rX − rZ ) = cosπ(rX − rY ′)+ cosπ(rX + rY ′), (55)

cosπrZ ′′ + cosπ(2rX + rZ ) = cosπ(rX − rY ′)+ cosπ(rX + rY ′). (56)

Solutions of (55), (56) of type (IV) and ‘‘III1 + I’’ can lead only to N = 3, 5, 7, 15, 21, therefore we can restrict our attention
to solutions of type ‘‘IIIϕ + I’’ and ‘‘IIϕ + IIψ ’’.

(1.2.1) Suppose that the solution of (55) is of type ‘‘IIIϕ + I’’. If cosπ(4rX − rZ ) = 0 and cosπ(rX ± rY ′) are in (IIIϕ), then
N = 3 or rZ = 4rX + ε1/2 (mod 2Z), Y ′

= ε2, ε1,2 = ±1. In the second case (56) transforms into

cosπrZ ′′ + cosπ(6rX + ε1/2) = ε2 cosπrX .

Now if the solution of this equation has type (IIIϕ) or (III1), then N = 3, 5, 7, 15, 21. Since it can be assumed that Z ′′
≠ 0,

type ‘‘IIϕ + I’’ solutions give N = 3.
On the other hand, if cosπ(rX − rY ′) = 0, i.e. rY ′ = rX + ε1/2 (mod 2Z), ε1 = ±1, then the triple (IIIϕ) in (55) is given by

cosπrZ̃ + cosπ(4rX − rZ ) = cosπ(2rX + ε1/2).

This relation implies that either (a) rZ = 2rX − ε1/2 + ε2/3 (mod 2Z) or (b) rZ = 6rX + ε1/2 + ε2/3 (mod 2Z). In the case
(a) Eq. (56) transforms into

cosπrZ ′′ + cosπ(4rX − ε1/2 + ε2/3) = cosπ(2rX + ε1/2).

Its solutions of type (IIIϕ) and ‘‘IIϕ + I’’ lead to admissible values N = 3, 9. Similarly, in the case (b) relation (56) gives
N = 3, 5, 9, 15.

(1.2.2) The case when the solution of (56) is of type ‘‘IIIϕ + I’’ is treated analogously to (1.2.1), hence we can assume
that solutions of both (55) and (56) have the form ‘‘IIϕ + IIψ ’’. Thanks to Lemma 31, it can be assumed that Y ′

≠ 0 so that
cosπ(rX ± rY ′) in (55), (56) are divided between the two pairs. Since Z̃ ≠ Z ′′, we may write without loss of generality

cosπ(4rX − rZ ) = cosπ(rX − rY ′),
cosπ(2rX + rZ ) = cosπ(rX + rY ′).

From the first equation follows either rY ′ = −3rX+rZ (mod 2Z) (forbiddenbecause thenY = Y ′) or rY ′ = 5rX−rZ (mod 2Z).
In the latter case the second equation becomes

cosπ(2rX + rZ ) = cosπ(6rX − rZ ),

and implies that 2rX − rZ ∈ Z. This in turn gives Z ′
= ±2, which is impossible as all points in Oyz are good.

Case (2). Suppose that Z and Z ′ are not equal to ±1 (Assumption 2). Clearly for N ≥ 9 one will always be able to find in Oyz a
pair (Z, Z ′) satisfying Assumptions 1 and 2. Then in (53) the two cosines cosπ(rX ± rZ ), as well as cosπ(rX ± rZ ′), are divided
between the two triples (IIIϕ) and (IIIψ ), otherwise X = ±1 and N = 3. We can therefore write

cosπrY + cosπ(rX − rZ )− cosπ(rX − rZ ′) = 0, (IIIϕ)
cosπrY ′′ − cosπ(rX + rZ )+ cosπ(rX + rZ ′) = 0. (IIIψ )

(57)

Similarly to the proof of Proposition 29, case (3.3) one can show that

sin
π(rZ − rZ ′)

2
= ±

1
2
,

i.e. rZ ′ = rZ + ε1/3 (mod 2Z), ε1 = ±1.
From ω = Y + Y ′

+ XZ = Z + Z ′
+ XY ′ follows that

(X − 1)ω = XY + (X2
− 2)Z + Z − Z ′.

Substituting (57) into this relation, we find

(X − 1)ω = 2 cosπ(2rX + rZ )+ 2 cosπ(2rX − rZ ′) = 2 cosπ(2rX + rZ )+ 2 cosπ(2rX − rZ − ε1/3).

Recall that for a simple cycle of length N , one may write N relations of the form (53) which correspond to different
unordered pairs (Z, Z ′). Suppose there exists a second relation whose solution has the form ‘‘IIIϕ + IIIψ ’’, and the associated
pair (Z̄, Z̄ ′) satisfies Assumptions 1 and 2. Then we can write

cosπ(2rX + rZ )+ cosπ(2rX − rZ − ε1/3) = cosπ(2rX + rZ̄ )+ cosπ(2rX − rZ̄ − ε2/3), (58)

where rZ̄ ′ = rZ̄ + ε2/3 (mod 2Z), ε2 = ±1. If ε1 = ε2, then (58) implies that either N = 3 or the pairs (Z, Z ′) and (Z̄, Z̄ ′)
coincide. Let us now set ε2 = −ε1 and consider rational solutions of (58).
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Solutions of type (IV) and ‘‘III1 + I’’ can lead only to N = 3, 5, 7, 15, 21 and N = 3, 5, 15 correspondingly. Solutions of
type ‘‘IIIϕ + I’’ give N = 3, 9. Finally, since ω ≠ 0 and it may be assumed that X ≠ 1, for solutions of type ‘‘IIϕ + IIψ ’’ there
are two possibilities:

cosπ(2rX + rZ ) = cosπ(2rX + rZ̄ ),
cosπ(2rX − rZ − ε1/3) = cosπ(2rX − rZ̄ + ε1/3).

(2.1)

If rZ = rZ̄ (mod 2Z), then the second equation implies that rZ = 2rX + (1− ε3)/2 (mod 2Z), ε3 = ±1. Assume that N ≠ 3,
then from the relation (X − 1)(Y ′

− Z) = Y − Z ′ we find

cosπrY ′ = ε3


cos 2πrX − cosπ(rX + ε1/3)− cosπ/3


.

Rational solutions of this equation lead to admissible values N = 3, 5, 7, 9, 15. Now if we take as the solution of the first
equation in (2.1) rZ̄ = −4rX −rZ (mod 2Z), then from the second equation follows rZ = −2rX −ε1/3+(1−ε3)/2 (mod 2Z).
Computing Y ′ from (X − 1)(Y ′

− Z ′) = Y ′′
− Z , one finds the same values of N .

cosπ(2rX + rZ ) = cosπ(2rX − rZ̄ + ε1/3),
cosπ(2rX − rZ − ε1/3) = cosπ(2rX + rZ̄ ).

(2.2)

This case is completely analogous to (2.1).
Case(3). Recall that solutions of (24) relevant for (53) should satisfy an additional constraint ε1ϕ1 + ε2ϕ2 + ε3ϕ3 + ε4ϕ4 ∈ Z
with some ε1,2,3,4 = ±1. This condition implies that ϕ ± 1/6 in (VIϕ) belong or do not belong to {ϕ1, ϕ2, ϕ3, ϕ4}

simultaneously, otherwise admissible N are 3, 5, 15. Furthermore if we assume that N ≠ 3, 5, 15, the unordered pairs
(rX + rZ , rX − rZ ) and (rX + rZ ′ , rX − rZ ′) can only be equivalent to the following:
(3.1) (2ϕ + 1/3, 2ϕ − 1/3) and (2ϕ + 3/5, 2ϕ − 3/5),
(3.2) (2ϕ + 1/3, 2ϕ − 1/3) and (2ϕ + 1/5, 2ϕ − 1/5),
(3.3) (2ϕ + 1/5, 2ϕ − 1/5) and (2ϕ + 2/5, 2ϕ − 2/5).

Here ϕ ∈ Q and all entries in (3.1)–(3.3) are considered mod 2Z. Now observe that in (3.1) and (3.2) either Z or Z ′ is
equal to ±1, therefore such 6-tuples can be excluded by Assumption 1. In the case (3.3), unordered pair (Z, Z ′) is equal to
(2 cosπ/5, 2 cos 2π/5) or (−2 cosπ/5,−2 cos 2π/5).

Let us now summarize the above results. If N ≠ 3, 5, 7, 9, 11, 15, 21, then N relations (53) can have only the following
solutions:

(a) with Z or Z ′ equal to ±1, ±
√
4 − X2,

(b) solutions of type ‘‘IIIϕ + IIIψ ’’ (and ‘‘VIϕ ’’) satisfying Assumptions 1 and 2; these appear in Oyz at most once (resp.
twice).

However, under such restrictions the length of Oyz cannot exceed 11 because of Lemma 23 (as all Zk in the simple cycle
are distinct). �

Proposition 33. Let ωY = ωZ = 0. Then either N ≤ 15 or the suborbit Oyz has the form
X = 2 cosπrX ,
Yk = −2 cosπ


rX (1 + 2k0 − 2k)+ rZ


,

Zk = 2 cosπ

2rX (k0 − k)+ rZ


.

(59)

where k0 ∈ {0, 1, . . . ,N − 1} and rX,Z ∈ Q.

Proof. Let us consider the relation (see Fig. 5)

cosπrY + cosπrY ′ + cosπ(rX + rZ )+ cosπ(rX − rZ ) = 0. (60)

For N ≥ 15 (N ≥ 6 in the simple cycle case) one will always be able to find in Oyz a solution with rY ,Y ′,Z ∈ Q satisfying the
restrictions Y , Y ′

≠ 0 and Z ≠ 0,±
√
4 − X2. With these requirements, the solution of (60) cannot be of type ‘‘III1 + I’’ or

‘‘IIIϕ + I’’ as the relation (60) does not contain zero cosines. Moreover one cannot have solutions of type ‘‘IIϕ + IIψ ’’ with
Y + Y ′

= 0 unless X = 0, i.e. N = 2.
For the remaining ‘‘IIϕ + IIψ ’’ solutions one can write

Y = −2 cosπ(rX + rZ ), Y ′
= −2 cosπ(rX − rZ ).

Setting Y = Yk0 , Y
′
= Yk0+1 we find that α, β in (21) are given by

α = −2 cosπ

rX (1 + 2k0)+ rZ


, β = 2 cosπ


2k0rX + rZ


,

and hence {Yk}, {Zk} have the form (59).
Now we can assume that all solutions satisfying the above restrictions are equivalent to the quadruples (IV). This leads

to admissible values N = 3, 5, 7, 15, 30, 42. However, the lengths N = 30, 42 can be excluded because it is not possible to
generate from (IV) a sufficient number of solutions with the same value of X and different Z .
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Fig. 6. Labeling ofΣ(Oyz) in Proposition 34.

Example. Checking all the quadruples (IV) with X = 2 cosπ/30 we find that there are only six possible values of Z:
±2 cos 7π/30, ±2 cos 11π/30 and ±2 cos 13π/30. �

Assume that Oyz has the form (59). If ωX = 0, then from (10) and (59) follows that ω4 = 0. Finite orbits of the induced
Λ̄ action (14) with ωX = ωY = ωZ = ω4 = 0 will be called Cayley orbits because in this case the Jimbo–Fricke relation (10)
reduces to Cayley cubic

XYZ + X2
+ Y 2

+ Z2
− 4 = 0. (61)

Cayley orbits admit a simple characterization, though their size can be arbitrarily large. To each of these orbits one can
assign in a non-unique way a pair of rational numbers. Indeed, consider an arbitrary point r = (X, Y , Z) ∈ O. It is not
fixed by at least one transformation, say x (we assume that O consists of more than one point). Lemma 17 then implies that
Y = 2 cosπrY , Z = 2 cosπrZ with rY ,Z ∈ Q. The relation (61) can be rewritten as

X + 2 cosπ(rY + rZ )

X + 2 cosπ(rY − rZ )


= 0,

hence we may assume that X = −2 cosπ(rY + rZ ) (if X = −2 cosπ(rY − rZ ), start from x(X, Y , Z)). Now making one step
from (X, Y , Z) by x, y and z one findsX(x(r)) = −2 cosπ(rY − rZ ),

Y (y(r)) = 2 cosπ(rY + 2rZ ),
Z(z(r)) = 2 cosπ(2rY + rZ ).

Continuing by induction we see that for any other point (X ′, Y ′, Z ′) ∈ O one has X ′
= 2 cosπrX ′ , Y ′

= 2 cosπrY ′ , Z ′
=

2 cosπrZ ′ , where rX ′,Y ′,Z ′ ∈ Q and the denominators of rX ′,Y ′,Z ′ are divisors of the common denominator of rY and rZ .
Lemma 23 then guarantees that O is finite.

Proposition 34. Let ωY = ωZ = 0. If Oyz has the form (59) and ωX ≠ 0, then N ≤ 12.

Proof. Let us make one step by x from each point of Oyz (see Fig. 6). Using (59), from the relations ωX = X + Xk + YkZk =

X + X̄k + Yk+1Zk one finds

ωX = Xk − 2 cosπ

rX (4k0 − 4k + 1)+ 2rZ


= X̄k − 2 cosπ


rX (4k0 − 4k − 1)+ 2rZ


,

(62)

for any k = 0, 1, . . . ,N − 1. If the point (Xk, Yk, Zk) is good then by Lemma 17

Xk = 2 cosπrXk , rXk ∈ Q. (63)

It can be bad in two cases:
(1) The graph of Oyz is a line, (X, Yk, Zk) corresponds to one of its end vertices and Xk = X . Since N > 1, Xk still has the

form (63).
(2) (Xk, Yk, Zk) is fixed by the transformations y and z. Then from (20) follows that either Xk = ±2 or Yk = Zk = 0. In

the latter case, however, the condition N > 1 is violated since the whole orbit O consists of only two points (X, 0, 0) and
(ωX − X, 0, 0).

Thus all Xk and X̄k have the form (63) and the solutions of (62) are classified by Lemma 20.
Introduce 2N quantities W0, . . . ,W2N−1 defined by

W2k = Xk − ωX , W2k+1 = X̄k − ωX , k = 0, . . . ,N − 1.

Obviously,Wl = 2 cosπ

rX (1+ 4k0 − 2l)+ 2rZ


. We nowwant to show that the number of coincidingWl cannot exceed 4.

Indeed, fix some l, then Wl′ = Wl implies that (a) l′ − l = 0 mod N or (b) rX (1 + 4k0 − l − l′) + 2rZ ∈ Z. The former case
leads to one compatibleWl′ , while the latter gives at most two: if l′1 and l′2 satisfy (b), then necessarily l′1 − l′2 = 0 mod N .

In the proof of Propositions 26 and 27 we have shown that the maximal number of ordered pairs (cosπr1, cosπr2),
r1,2 ∈ Q such that cosπr1 + cosπr2 = const ≠ 0 is equal to 6. Hence the number of distinct possible values for all Wl’s
cannot exceed 6 and the total number ofWl’s, equal to 2N , cannot exceed 24. �
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Table 2
Restrictions on possible values of X for N > 1.

Restrictions on N , nX Number of possible X

ω2
Y ≠ ω2

Z N ≤ 10, nX odd and even 31

ωY = ωZ ≠ 0 N ≤ 10, nX odd and even,
N = 11, 15, 21, nX odd 46

ωY = ωZ = 0 with
ωX ≠ 0 or ω4 ≠ 0 N ≤ 15, nX odd and even 71

Table 3
Admissible values of good coordinates.

good X good Y good Z

(A) S1 S1 S1
(B) S2 S1 S1
(C) S3 S1 S1
(D) S2 S2 S2
(E) S3 S3 S3

Let us summarize the results of this subsection. Given a finite orbit O, common coordinate X of all points of any 2-colored
suborbit Oyz ⊂ O of length N > 1 has the form X = 2 cosπnX/N , 0 < nX < N , where N and nX are coprime. Unless
ωX = ωY = ωZ = ω4 = 0, one has a number of restrictions on possible values of N and nX listed in Table 2. These
restrictions imply in particular that X can take only a finite number of explicitly defined values. In the next subsection, we
use this observation to construct an exhaustive search algorithm giving all finite orbits of (14).

2.6. Search algorithm

Let O ⊂ C3 be a finite orbit of the induced Λ̄ action (14) consisting of more than one point. Since we are interested in
nonequivalent orbits, it can be assumed that the parameters ωX,Y ,Z,4 satisfy one of the following sets of constraints:

(A) ω2
X ≠ ω2

Y ≠ ω2
Z ,

(B) ω2
X ≠ ω2

Y , ωY = ωZ ≠ 0,
(C) ωX ≠ 0, ωY = ωZ = 0,
(D) ωX = ωY = ωZ ≠ 0,
(E) ωX = ωY = ωZ = 0, ω4 ≠ 0,
(F) ωX = ωY = ωZ = ω4 = 0.
In what follows, the case (F) will be omitted, as all finite orbits with such parameter values have already been described

above.

Definition 35. Let r = (X, Y , Z) be a point in O. Its coordinate X (or Y , Z) will be called good if r is not fixed by at least one
of the transformations y and z (resp. x and z, x and y).

Remark 36. All coordinates of a good point are good. If r is a bad point, e.g. fixed by y and z but not by x, then it has good
coordinates Y and Z .

Define three finite sets of numbers (cf. Table 2):

S1 =


2 cos

πn
N

1 < N ≤ 10, n odd and even

,

S2 =


2 cos

πn
N

1 < N ≤ 10, n odd and even;N = 11, 15, 21, n odd

,

S3 =


2 cos

πn
N

1 < N ≤ 15, n odd and even

.

In all three cases n is supposed to be coprime with N and 0 < n < N . Now the results of the previous subsection imply that
good coordinates of any point r ∈ O belong to one of these lists according to Table 3.

Any orbit O is completely defined by a point r ∈ O and the parameter triple ω = (ωX , ωY , ωZ ). Equivalently, instead of
ω one can use three points x(r), y(r), z(r) (some of them can coincide with r). Denote

X ′
= X(x(r)), Y ′

= Y (y(r)), Z ′
= Z(z(r)), (64)

then we have
ωX = X + X ′

+ YZ, ωY = Y + Y ′
+ XZ, ωZ = Z + Z ′

+ XY . (65)

Definition 37. Let r be a good point in a finite orbit O. The set of four points {r, x(r), y(r), z(r)} will be called a good
generating configuration (GGC) for O if at least two of three points x(r), y(r), z(r) are good.
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Fig. 7. Four orbits without GGCs.

X

Fig. 8. 6-vertex graph without GGCs.

Lemma 38. Let O be a finite orbit that does not contain a GGC. ThenΣ(O) can only be equivalent (up to permutations of colors)
to one of the four graphs shown in Fig. 7.

Proof. If O contains more than 2 points, then at least one of them is good. Denoting this point by r, we can assume that y(r)
and z(r) are bad. Now if x(r) = r, then one obtains orbit III. The case when x(r) ≠ r is bad corresponds to orbit IV. Finally, if
x(r) ≠ r is another good point, then by assumptions of the Lemma the points y(x(r)) and z(x(r)) are bad, andΣ(O) is given
by the 6-vertex graph represented in Fig. 8.

It turns out, however, that this last graph is forbidden. To see this, note that yz-suborbits 1-2-3 and 4-5-6 both have length
3, therefore X ′ and X ′′ are equal to ±1. Since X ′

≠ X ′′, one can set X ′
= 1, X ′′

= −1. Then from the relations corresponding
to y- and z-edges,

ωY = Y + Y ′
+ X ′Z = 2Y + X ′Z ′

= 2Y + X ′′Z ′′
= Y + Y ′′

+ X ′′Z,

ωZ = Z + Z ′
+ X ′Y = 2Z + X ′Y ′

= 2Z + X ′′Y ′′
= Z + Z ′′

+ X ′′Y ,

it follows that Y = −Z ′
= Z ′′ and Z = −Y ′

= Y ′′. Self-loops of color x at the points 1, 3, 4 and 6 in turn imply that ωX = 0,
Y 2

= Z2
= 2. However, this is incompatible with the x-edge 2-5, which gives ωX = YZ . �

The orbits of (14) with graphs I–IV are completely described by the following:

Lemma 39. 1. Orbits of type I consist of one point (X, Y , Z) ∈ C3. The parameters ωX,Y ,Z,4 are given by

ωX = 2X + YZ, ωY = 2Y + XZ, ωZ = 2Z + XY , (66)

ω4 = 4 + 2XYZ + X2
+ Y 2

+ Z2. (67)

2. Any orbit of type II is equivalent to an orbit consisting of 2 points (X ′, 0, 0) and (X ′′, 0, 0), where X ′, X ′′
∈ C, X ′

≠ X ′′ and
ωX = X ′

+ X ′′, ωY = ωZ = 0, ω4 = 4 + X ′X ′′.
3. Any orbit of type III is equivalent to an orbit consisting of 3 points (1, 0, 0), (1, ω, 0), (1, 0, ω), where ω ∈ C∗ and ωX = 2,
ωY = ωZ = ω, ω4 = 5.
4. Any orbit of type IV is equivalent to an orbit consisting of 4 points (1, 1, 1), (ω− 2, 1, 1), (1, ω− 2, 1), (1, 1, ω− 2), where
ω ∈ C, ω ≠ 3 and ωX = ωY = ωZ = ω, ω4 = 3ω.

Proof. Statement 1 is obvious (ω4 is determined from (10)), hence we start with orbits of type II. In this case, since
xy- and xz-suborbits 1-2 have length 2, one finds Y = Z = 0. From the relations corresponding to the self-loops then
follows ωY = ωZ = 0.

For orbits of type III, xy-suborbit 1-2 and xz-suborbit 2-3 both have length 2, therefore Y = Z = 0. Similarly, yz-suborbit
1-2-3 has length 3 and thus X = ±1. Since the simultaneous change of signs of e.g. ωX , ωY , and also X- and Y -coordinates
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of all points leads to an equivalent orbit, one can set X = 1, and then x-self-loop at the point 2 gives ωX = 2. At last, y- and
z-edges of the graph imply that ωY = ωZ = Y ′

= Z ′.
In graph IV, xy-suborbit 1-4-2, xz-suborbit 1-4-3 and yz-suborbit 2-4-3 have length 3, therefore X , Y and Z are equal to

±1. It can be assumed that either (a) X = Y = Z = 1 or (b) X = Y = Z = −1. In the case (a), y- and z-self-loops at the
point 1 imply that ωY = ωZ = 2 + X ′, hence by symmetry

ωX = ωY = ωZ = 2 + X ′
= 2 + Y ′

= 2 + Z ′,

and the relations corresponding to the edges 1-4, 2-4 and 3-4 are satisfied automatically. In the case (b), one similarly finds
ωX = ωY = ωZ = −2 − X ′

= −2 − Y ′
= −2 − Z ′, but e.g. the relation 1-2 gives ωX = X ′. Thus X ′

= −1 and we obtain a
contradiction. �

Unless ωX = ωY = ωZ = ω4 = 0, one has only a finite number of GGCs (and hence only a finite number of finite orbits
different from I to IV). Indeed, these configurations can be of two types:
Type (i). All four points r, x(r), y(r), z(r) ∈ O are good. In this case six coordinates X , Y , Z , X ′, Y ′, Z ′ (defined by (64)) are
good, hence each of them can take only a finite number of values, as specified in Table 3.
Type (ii). One of three points x(r), y(r), z(r) ∈ O is bad. Suppose e.g. that x(r) is bad, then X , Y , Z , Y ′, Z ′ are good coordinates,
but X ′ is not. However, since x(r) is fixed by y and z, we have the equations

ωY = 2Y + X ′Z = Y + Y ′
+ XZ,

ωZ = 2Z + X ′Y = Z + Z ′
+ XY . (68)

Unless Y = Z = 0, one can use (68) to express X ′ in terms of good coordinates. Also notice that Y , Z , Y ′, Z ′ should satisfy an
additional relation

Y (Y − Y ′) = Z(Z − Z ′). (69)

On the other hand if Y = Z = 0, then (68) implies that ωY = ωZ = 0, the orbit O is of type II and in particular it does not
contain a GGC.

Let us nowdescribe inmore detail the sets of good coordinates generating all possible candidates for finite orbits, different
from orbits I–IV and those of Cayley type:
Class 1 (A-i). Here one has 316

≈ 109 GGCs, corresponding to all possible X, Y , Z , X ′, Y ′, Z ′
∈ S1. Since we are interested in

nonequivalent orbits, it can be assumed that either 0 ≤ X ≤ Y ≤ Z or 0 ≥ X ≥ Y ≥ Z , and then the above number reduces
to 16 · 17 · 18 · 313/3 − 1 = 48618911. We do not exclude the remaining equivalent GGCs for simplicity of the algorithm.
Class 2 (A-ii, B-ii, C-ii, D-ii, E-ii). In this case it is convenient to deal not only with ωX,Y ,Z satisfying one of the conditions
(A)–(E), but also with equivalent parameter triples. One can then assume that x(r) is bad and 0 ≤ Y ≤ Z , Z > 0. Since Z ′ can
now be determined from (69), the whole orbit is completely fixed by four good coordinates X, Y , Z, Y ′, taking their values
in the set

S4 =


2 cos

πn
N

1 < N ≤ 15,N = 21, n odd and even

,

consisting of 83 elements. The total number of configurations to be checked is therefore equal to 41 · 22 · 832
= 6213878.

Class 3 (B-i, C-i). Here we use good coordinates X, X ′
∈ S4, Y , Y ′, Z ∈ S1, while Z ′ is computed from

Z ′
=

Y + Y ′

+ XZ

− Z − XY ,

and it can be assumed that 0 ≤ |Y | ≤ Z . This gives 162
· 31 · 832

= 54671104 configurations, fromwhich we should choose
only those with Z ′

∈ S1.
Class 4 (D-i, E-i). These orbits are completely determined by X, X ′, Y , Z ∈ S4. Since x(r), y(r), z(r) are good, it can be assumed
that X ≤ Y ≤ Z , which leads to 832

· 84 · 85/6 = 8197910 possibilities.
In order to check which generating sets do actually lead to finite orbits, one can use the following algorithm:

1. Consider any generating set from the above as a set P of known orbit points and known adjacency relations between
them. E.g. if it is known by construction that x(r) = r′ for some r, r′ ∈ P , we will say that r′ is a known x-neighbor of
r and vice versa. Thus any point r ∈ P has at most 3 known neighbors, corresponding to x-, y- and z-edges originating
from r.

2. If the set is characterized by ωX = ωY = ωZ = ω4 = 0, the algorithm stops (the only finite orbits with such parameters
are Cayley orbits).

3. Using P , construct the set P u of points with at least one unknown neighbor.
4. Choose an arbitrary point r = (X, Y , Z) ∈ P u. Assume for definiteness that its x-neighbor x(r) = (X ′, Y , Z) is unknown.

Then compute X ′ and proceed as follows:
4.1. If (X ′, Y , Z) ∈ P u, then add the appropriate x-adjacency relation to P , update P u and go to Step 5, else
4.2. If X ′ has a good value (in practice it is sufficient to require X ′

∈ S4), then add (X ′, Y , Z) and the appropriate
x-adjacency relation to P , update P u and go to Step 4, else
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4.3. If 2Y + X ′Z = ωY and 2Z + X ′Y = ωZ , then add (X ′, Y , Z) and the appropriate x-, y- and z-adjacency relations to P ,
update P u and go to Step 5, else the algorithm stops (the orbit cannot be finite).

5. If P u is empty, the algorithm stops (the orbit is finite and its points are given by P ), otherwise go to Step 4.

Remark 40. It is easy to see that the algorithm stops after a finite number of steps. Indeed, the total number Ng of good
points in any finite orbit which is not of Cayley type cannot exceed 712

· 2 = 10082, while the number of bad points cannot
exceed Ng + 2.

2.7. List of finite orbits

We have implemented the above algorithm with a computer program written in C language. The check of all generating
sets took less than 10 min on a usual 1.7 GHz desktop computer. It turned out that there are only 45 nonequivalent finite
exceptional orbits, different from orbits I–IV and Cayley orbits. We describe these orbits in Table 4 by indicating one of the
orbit points

(X, Y , Z) =

2 cosπrX , 2 cosπrY , 2 cosπrZ


,

and the parameter triple (ωX , ωY , ωZ ). For further convenience, we also include the value of 4 − ω4, computed from the
Jimbo–Fricke relation (10). The graphs of exceptional Λ̄ orbits are shown in Figs. 9–11 (marked vertices correspond to the
points listed in Table 4).

Our results can now be summarized in

Theorem 1. The list of all nonequivalent finite orbits of the induced Λ̄ action (14) consists of the following:

• four orbits I–IV , described in Lemma 39;
• 45 exceptional orbits listed in Table 4;
• Cayley orbits; all of these can be generated from the points

−2 cosπ(rY + rZ ), 2 cosπrY , 2 cosπrZ

, rY ,Z ∈ Q

with ωX = ωY = ωZ = 0 (the relation ω4 = 0 is satisfied automatically).

Remark 41. Note that the graphs of orbits I–IV and of all exceptional orbits except orbits 30, 43–45 contain self-loops.
It means in particular that these orbits do not split under the action of non-extended modular group Λ. In fact the last
statement holds for orbits 30, 43–45 as well, because in all four cases the orbit graphs contain simple cycles with an odd
number of edges.

We now turn to the description of nonequivalent finite orbits of the Λ̄ action (7) on M. Note that, given ωX,Y ,Z,4,
Eqs. (11)–(12) have only a finite number of solutions for {px, py, pz, p∞}. In fact this number cannot exceed 24, see proof
of Proposition 10, and all such solutions are related by the affine D4 transformations. A natural question is therefore: when
does the 7-tuple p = (px, py, pz, p∞, X, Y , Z) (see (8), (9)) completely fix the conjugacy class of the triple (Mx,My,Mz) ∈ G3,
G = SL(2,C) in M = G3/G?

Let us first prove an auxiliary result:

Lemma 42. Let Ma,Mb,Mc
∈ G be three matrices such that the eigenvalues of at least one of them are different from ±1. Then

one and only one of the following holds:

1. Seven quantities

ta = TrMa, tb = TrMb, tc = TrMc, tabc = Tr

MaMbMc , (70)

tab = Tr

MaMb , tac = Tr


MaMc , tbc = Tr


MbMc , (71)

completely fix the conjugacy class of the triple (Ma,Mb,Mc) in M;
2. Ma,Mb,Mc have a common eigenvector.

Proof. Using the same tricks as in the proof of Lemma 5, one easily expresses tbac = Tr

MbMaMc


in terms of (70)–(71):

tbac = Tr

tab1 − (Ma)−1(Mb)−1Mc

= tabtc − Tr

(ta1 − Ma)(tb1 − Mb)Mc

= tabtc + tac tb + tbc ta − tatb tc − tabc .

We may therefore assume without loss of generality that the eigenvalues of Ma are not equal to ±1; in particular, Ma is
diagonalizable. It is convenient to transform it into diagonal formMa

= diag(λa, λ−1
a ), withλa fixed by ta. Now the equations

for tb and tab (tc and tac) fix Mb
11, M

b
22 and Mb

12M
b
21 (resp. Mc

11, M
c
22 and Mc

12M
c
21). The equations for tbc and tabc , in their turn,

completely determine (MbMc)11 and (MbMc)22, hence the productsMb
12M

c
21 andMb

21M
c
12 are also fixed.
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Table 4
Exceptional finite Λ̄ orbits.

Size (ωX , ωY , ωZ , 4 − ω4) (rX , rY , rZ )

1 5 (0, 1, 1, 0) (2/3, 1/3, 1/3)

2 5 (3, 2, 2,−3) (1/3, 1/3, 1/3)

3 6 (1, 0, 0, 2) (1/2, 1/3, 1/3)

4 6 (
√
2, 0, 0, 1) (1/4, 1/3, 3/4)

5 6 (3, 2
√
2, 2

√
2,−4) (1/2, 1/4, 1/4)

6 6

1 −

√
5, 3−

√
5

2 , 3−
√
5

2 ,−2 +
√
5


(4/5, 1/3, 1/3)

7 6

1 +

√
5, 3+

√
5

2 , 3+
√
5

2 ,−2 −
√
5


(2/5, 1/3, 1/3)

8 7 (1, 1, 1, 0) (1/2, 1/2, 1/2)

9 8 (2, 0, 0, 0) (0, 1/3, 2/3)

10 8 (1,
√
2,

√
2, 0) (1/2, 1/2, 1/2)

11 8


3+
√
5

2 , 1, 1,−
√
5+1
2


(1/3, 1/2, 1/2)

12 8


3−
√
5

2 , 1, 1,
√
5−1
2


(1/3, 1/2, 1/2)

13 9

2 −

√
5, 2 −

√
5, 2 −

√
5, 5

√
5−7
2


(4/5, 3/5, 3/5)

14 9

2 +

√
5, 2 +

√
5, 2 +

√
5,− 5

√
5+7
2


(2/5, 1/5, 1/5)

15 10 (1, 0, 0, 1) (1/3, 1/3, 2/3)

16 10

3 −

√
5, 3 −

√
5, 3 −

√
5, 7

√
5−11
2


(3/5, 3/5, 3/5)

17 10

3 +

√
5, 3 +

√
5, 3 +

√
5,− 7

√
5+11
2


(1/5, 1/5, 1/5)

18 10

−

√
5−1
2 ,−

√
5−1
2 ,−

√
5−1
2 , 0


(1/2, 1/2, 1/2)

19 10
√

5+1
2 ,

√
5+1
2 ,

√
5+1
2 , 0


(1/2, 1/2, 1/2)

20 12 (0, 0, 0, 3) (2/3, 1/4, 1/4)

21 12 (1, 0, 0, 2) (0, 1/4, 3/4)

22 12 (2,
√
5,

√
5,−2) (1/5, 2/5, 2/5)

23 12


3+
√
5

2 ,
√
5+1
2 ,

√
5+1
2 ,−

√
5


(2/5, 2/5, 2/5)

24 12


3−
√
5

2 ,−
√
5−1
2 ,−

√
5−1
2 ,

√
5


(4/5, 4/5, 4/5)

25 12
√

5+1
2 ,

√
5−1
2 , 1, 0


(1/2, 1/2, 1/2)

26 15


3−
√
5

2 , 3−
√
5

2 , 3−
√
5

2 ,
√
5 − 1


(1/2, 3/5, 3/5)

27 15


3+
√
5

2 , 3+
√
5

2 , 3+
√
5

2 ,−
√
5 − 1


(1/2, 1/5, 1/5)

28 15


5−
√
5

2 , 1 −
√
5, 1 −

√
5, 3

√
5−5
2


(3/5, 4/5, 4/5)

29 15


5+
√
5

2 , 1 +
√
5, 1 +

√
5,− 3

√
5+5
2


(1/5, 2/5, 2/5)

30 16 (0, 0, 0, 2) (2/3, 2/3, 2/3)

31 18 (2, 2, 2,−1) (0, 1/5, 3/5)

32 18 (1 − 2 cos 2π/7, 1 − 2 cos 2π/7, 1 − 2 cos 2π/7, 4 cos 2π/7) (6/7, 5/7, 5/7)

33 18 (1 − 2 cos 4π/7, 1 − 2 cos 4π/7, 1 − 2 cos 4π/7, 4 cos 4π/7) (2/7, 3/7, 3/7)

34 18 (1 − 2 cos 6π/7, 1 − 2 cos 6π/7, 1 − 2 cos 6π/7, 4 cos 6π/7) (4/7, 1/7, 1/7)

35 20


3−
√
5

2 , 0, 0, 1 +
√
5


(0, 1/3, 2/3)

36 20


3+
√
5

2 , 0, 0, 1 −
√
5


(0, 1/3, 2/3)

37 20

1,−

√
5−1
2 ,−

√
5−1
2 ,

√
5+1
2


(2/3, 3/5, 3/5)

38 20

1,

√
5+1
2 ,

√
5+1
2 ,−

√
5−1
2


(2/3, 1/5, 1/5)

(continued on next page)



O. Lisovyy, Y. Tykhyy / Journal of Geometry and Physics 85 (2014) 124–163 151

Table 4 (continued)

Size (ωX , ωY , ωZ , 4 − ω4) (rX , rY , rZ )

39 24 (1, 1, 1, 1) (1/5, 1/2, 1/2)

40 30

−

√
5+1
2 , 0, 0, 3−

√
5

2


(2/3, 2/3, 2/3)

41 30
√

5−1
2 , 0, 0, 3+

√
5

2


(2/3, 2/3, 2/3)

42 36 (1, 0, 0, 2) (0, 1/5, 4/5)

43 40

0, 0, 0, 5−

√
5

2


(2/5, 2/5, 2/5)

44 40

0, 0, 0, 5+

√
5

2


(4/5, 4/5, 4/5)

45 72 (0, 0, 0, 3) (1/2, 1/5, 2/5)

Fig. 9. Graphs of exceptional orbits 1–20.
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Fig. 10. Graphs of exceptional orbits 21–38.

If Mb
12M

b
21 = Mc

12M
c
21 = Mb

12M
c
21 = Mb

21M
c
12 = 0, then either Mb

12 = Mc
12 = 0 or Mb

21 = Mc
21 = 0, i.e. Ma,b,c are

simultaneously lower or upper triangular. On the other hand if at least one of the four products, say Mb
12M

b
21, is non-zero,

then, using the remaining freedom of conjugation ofMa,b,c by any diagonal matrix, one can setMb
12 = 1 andMb

21(≠ 0),Mc
12

andMc
21 become completely fixed. Moreover, in this caseMa,b,c clearly cannot have a common eigenvector. �

Lemma 43. Let Mx,My,Mz ∈ G. One and only one of the following holds:

1. Conjugacy class of the triple (Mx,My,Mz) in M is uniquely fixed by the 7-tuple p = (px, py, pz, p∞, X, Y , Z), defined
by (8)–(9).

2. Mx,My,Mz have a common eigenvector.
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Fig. 11. Graphs of exceptional orbits 39–45.

Proof. When the eigenvalues of at least one of three matricesMx,y,z are not equal to ±1, the statement is equivalent to the
previous lemma.

Similarly, if e.g. the eigenvalues of MxMy (or MxM−1
y ) are different from ±1, we can apply Lemma 42 to the triple

Ma
= MxMy, Mb

= M−1
y , Mc

= Mz (resp. Ma
= MxM−1

y , Mb
= My, Mc

= Mz). Since ta, tb, tc , tab, tac , tbc , tabc are clearly
expressible in terms of p, the conjugacy class of (Ma,Mb,Mc), and hence that of (Mx,My,Mz), is fixed unless Ma,b,c can be
simultaneously brought to lower or upper triangular form.

Therefore, it is sufficient to prove the lemma in the case when the eigenvalues of Mx,y,z , MxM±1
y , MxM±1

z and MyM±1
z

are equal to ±1. We can assume without loss of generality that TrMx = TrMy = TrMz = 2, but then from the relation
Tr

MxMy


+ Tr


MxM−1

y


= TrMx · TrMy follows that Tr


MxMy


= 2. Similarly, one has Tr (MxMz) = Tr


MyMz


= 2. Now,

if we transform Mx into upper triangular form, the relations TrMx = TrMy = Tr

MxMy


= 2 imply that either Mx is the

identity matrix or My is also upper triangular. Combining with analogous result for Mx, Mz we see that all three matrices
should have a common eigenvector. �
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Lemma 44. If three matrices Mx,My,Mz ∈ G have a common eigenvector, then the elements of p satisfy characteristic
relations (66) of orbit I, with ωX,Y ,Z defined by (11).

Proof. Transforming Mx,y,z into upper triangular form, we see that p can be written in terms of the eigenvalues of Mx,y,z . It
is sufficient to substitute these expressions into the relations (66) to check that they are satisfied automatically. �

We now formulate a converse statement:

Lemma 45. Let Mx,My,Mz ∈ G be three matrices with no common eigenvector. If p satisfies the relations (66), then at least one
of four matrices Mx, My, Mz , MzMyMx is equal to ±1.

Proof. Using (66) and (10), write ω4 in terms of X, Y , Z:

ω4 = 4 + 2XYZ + X2
+ Y 2

+ Z2.

Substituting the expressions for ωX,Y ,Z,4 into the cubic equation (15) for ξ = p2x + p2y + p2z + p2
∞
, one finds that it has only

two solutions: (1) ξ = 8 + XYZ and (2) ξ = 4 + X2
+ Y 2

+ Z2.
Case(1). Let us write X = 2 cosπrX , Y = 2 cosπrY , Z = 2 cosπrZ . It is straightforward to check that (p0x , p

0
y, p

0
z , p

0
∞
) defined

by

p0x = 2 cosπ(rY + rZ − rX )/2, p0y = 2 cosπ(rX + rZ − rY )/2,
p0z = 2 cosπ(rX + rY − rZ )/2, p0

∞
= 2 cosπ(rX + rZ + rY )/2,

is one of possible solutions for (px, py, pz, p∞). All other solutions characterized by the same value of ξ have the form (17),
see the proof of Proposition 10. However, it is not difficult to show that for all such (px, py, pz, p∞) one can find infinitely
many triples (M ′

x,M
′
y,M

′
z) of upper triangular matrices with the same p as (Mx,My,Mz). E.g. if pν = p0ν , ν = x, y, z,∞, then

we may set

M ′

x =


eiπ(rY +rZ−rX )/2 ∗

0 e−iπ(rY +rZ−rX )/2


,

M ′

y =


eiπ(rX+rZ−rY )/2 ∗

0 e−iπ(rX+rZ−rY )/2


,

M ′

z =


eiπ(rX+rY −rZ )/2 ∗

0 e−iπ(rX+rY −rZ )/2


.

Now since p does not fix the conjugacy class of the triple (Mx,My,Mz) uniquely, by Lemma 43Mx,y,z should have a common
eigenvector.
Case(2). Here, one possible solution for (px, py, pz, p∞) is

p0x = X, p0y = Y , p0z = Z, p0
∞

= 2, (72)

and all the others are given by (17). Consider the solution (72) and transformMzMyMx into upper triangular form:MzMyMx =
1 α
0 1


. Since

X = Tr

MyMz


= Tr


MzMyMx · M−1

x


= px − α (Mx)21 ,

the relation px = X implies that either MzMyMx = 1 or Mx is upper triangular. Repeating the same procedure with py = Y ,
pz = Z andusing the assumption thatMx,y,z have no commoneigenvectors, one concludes thatMzMyMx = 1. Other solutions
for (px, py, pz, p∞) are treated in a similar manner. �

We thus obtain a description of all nonequivalent finite orbits of the Λ̄ action (7) on M:

• There are two families of nonequivalent orbits that consist of one point. They are given by the conjugacy classes of triples
(a) (1,My,Mz) and (b) (Mx,My,M−1

x M−1
y ), whereMy,Mz in (a) andMx,My in (b) haveno commoneigenvectors,Mx,y,z ∈ G.

• Each finite orbit O of the induced Λ̄ action (14) that consists of more than one point (i.e. each of orbits II–IV, 1–45 and
Cayley orbits of size greater than one) generates a finite number of orbits of (7), which have the same size as O and
correspond to different 4-tuples (px, py, pz, p∞) solving (11) and (12). (Recall that the parametersωX,Y ,Z,4 for orbits II–IV
and 1–45 are specified by Lemma 39 and Table 4, while for Cayley orbits ωX = ωY = ωZ = ω4 = 0.) Once a solution
for (px, py, pz, p∞) is chosen, the orbit in M is completely fixed by the 7-tuple (px, py, pz, p∞, X, Y , Z), where (X, Y , Z)
is any point in O.

• All remaining finite orbits of (7) belong to the space U ⊂ M of conjugacy classes of triples of upper triangular SL(2,C)-
matrices.
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3. Algebraic Painlevé VI solutions

We are now prepared for the classification of PVI solutions with finite branching up to parameter equivalence.

Definition 46. Let us associate to any PVI solution branch the 7-tuple of monodromy data (ωX , ωY , ωZ , ω4, X, Y , Z) ∈ C7

defined by (8)–(12). Two finite branch PVI solutions will be called
• equivalent if they are related by Bäcklund transformations specified in Table 1;
• parameter equivalent if their analytic continuation leads to equivalent (under K4 o S3 transformations of Subsection

Section 2.2) orbits in the space of 7-tuples of monodromy data.

Remark 47. Our parameter equivalence is strictly stronger than that of [21], and is rather similar to geometric equivalence,
cf. [21], Def. 8. In particular, it distinguishes solutions 3, 21 and 42 (see below), whose parameters θ = (θx, θy, θz, θ∞) lie in
the same orbit of the Okamoto affine F4 action. Another such example is given by solutions 20 and 45.

Remark 48. In [21], p. 13 it is stated that the four-branch octahedral PVI solution [6]

w =
(s − 1)2

s(s − 2)
, t =

(s + 1)(s − 1)3

s3(s − 2)
, (73)

with parameters θ = (ϑ, ϑ, ϑ, 1 − 3ϑ) and the four-branch dihedral solution IV below are inequivalent for ϑ = θ = 1/6,
although characterized by the same parameters. This seems to be incorrect; replacing s → 1/(s + 1) in (73) and applying
to w affine D4 transformation sxsyszsδsxsysz , one finds solution IV with θ = 1/2 − 2ϑ . Despite the failure of the above
counterexample, our parameter equivalence is presumably weaker than the equivalence under Bäcklund transformations.

Let us now examine one by one all finite orbits listed in Theorem 1 (recall that finite orbits which are not of Cayley type do
not split under the action ofΛ). First consider orbit I, consisting of a single point. In this case all solutions of Painlevé VI can
be found explicitly. In particular, for reducible monodromy (i.e. whenMx,My,Mz have a common eigenvector) PVI equation
linearizes and one has the following:

Proposition 49 (Theorem 4.1 in [28]). All solutions of PVI corresponding to reducible monodromy are equivalent to the one-
parameter family of Riccati solutions

w(t) =
(1 + θx + θz − t − θz t)u(t)− t(t − 1)u′(t)

(1 + θx + θy + θz)u(t)
, (74)

realized for θ∞ = −(θx+θy+θz), where u(t) = u1(t)+νu2(t) and u1,2(t) are two linear independent solutions of the following
hypergeometric equation:

t(1 − t)u′′
+ [(2 + θx + θz)− (4 + θx + θy + 2θz)t]u′

− (2 + θx + θy + θz)(θz + 1)u = 0. (75)

Remark 50. It is well-known that one-parameter family (74) contains solutionswith a finite number of branches if and only
if the parameters of the hypergeometric equation (75) belong to the Schwarz table, see [29] or Table 1 in [3].

The solutions of PVI in the case of ‘‘1-smaller monodromy’’, when one of the matricesMx,My,Mz orM∞ = (MzMyMx)
−1

is equal to ±1, have been completely described in [30]. Any such solution is either (i) degenerate (w = 0, 1, t,∞) or
(ii) equivalent via Bäcklund transformations to a Riccati solution or (iii) belongs to a set of generalized Chazy solutions,
expressible in terms of hypergeometric functions; see Lemma 33 in [30] for the details.

Next we consider Cayley orbits. Since in this case ωX = ωY = ωZ = ω4 = 0, the 4-tuple (px, py, pz, p∞) can only be
(0, 0, 0, 0) or a permutation of (±2,±2,±2,∓2). This in turn implies that the 4-tuple of PVI parameters (θx, θy, θz, θ∞)
consists of either (i) 1 odd and 3 even integers or (ii) 1 even and 3 odd integers or (iii) all four θx,y,z,∞ have half-integer
values. For θx = θy = θz = 0, θ∞ = 1 the general solution of Painlevé VI is known:

Proposition 51. All solutions of the sixth Painlevé equation with θx = θy = θz = 0, θ∞ = 1 are given by Picard solutions

w(t) = ℘ (ν1u1 + ν2u2; u1, u2)+
t + 1
3

, ν1,2 ∈ C, 0 ≤ Re ν1,2 < 2, (76)

where ℘(z; u1, u2) is the Weierstrass elliptic function and u1,2(t) are two linearly independent solutions of the following
hypergeometric equation:

4t(1 − t)u′′
+ 4(1 − 2t)u′

− u = 0, (77)

namely,

u1 =
π

2 2F1


1
2
,
1
2
, 1, t


, u2 =

iπ
2 2F1


1
2
,
1
2
, 1, 1 − t


.
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Proof. This statement was proved by Fuchs in [31]. �

All finite branch solutions corresponding to Cayley orbits are therefore parameter equivalent to solutions from the above
two-parameter family. Equivalence under Bäcklund transformations is slightly more subtle, see e.g. [32].

There remain precisely 45 parameter inequivalent finite branch PVI solutions and three families depending on continuous
parameters, which correspond to orbits 1–45 and II–IV (existence of solutions with appropriate monodromy data follows
from their explicit construction below). Surprisingly, each equivalence class contains algebraic representatives that have
already appeared in the literature [8,7,21–23,4,5,24,6,9,10]. Complete list of these parameter inequivalent algebraic
solutions is given below. For each solution we specify the 4-tuple of PVI parameters θ = (θx, θy, θz, θ∞), the number of
branches and the explicit solution curve. We also give references to original papers where the corresponding algebraic
solutions have been obtained and correct a few misprints (in solutions 13, 24, 43 and 44).

Solution II, 2 branches, θ = (θa, θb, θb, 1 − θa):

w(t) = ±
√
t.

In Lemma 39, X ′
= 2 cos 2πθb, X ′′

= −2 cos 2πθa.
Solution III, 3 branches, θ = (2θ, θ, θ, 2/3):

w =
(s − 1)(s + 2)

s(s + 1)
, t =

(s − 1)2(s + 2)
(s + 1)2(s − 2)

,

first obtained in [4], (E.31); in the above form it appeared in [6]. In Lemma 39, ω = 2 cos 3πθ .
Solution IV, 4 branches, θ = (θ, θ, θ, 1/2):

w =
s2(s + 2)
s2 + s + 1

, t =
s3(s + 2)
2s + 1

,

first obtained in [4], (E.29); in the above form it appeared in [24]. In Lemma 39, ω = 4 cos2 πθ .
Solution 1, 5 branches, θ = (2/5, 1/5, 1/3, 2/3):

w =
2(s2 + s + 7)(5s − 2)
s(s + 5)(4s2 − 5s + 10)

, t =
27(5s − 2)2

(s + 5)(4s2 − 5s + 10)2
,

solution 20 in [21], p. 21.
Solution 2, 5 branches, θ = (1/5, 2/5, 1/5, 2/5):

w =
s2(s − 1)

3(s − 2)(s + 3)
, t =

2s3(s2 − 5)
(s − 2)2(s + 3)3

,

first found in [9], Eq. (3.3).
Solution 3, 6 branches, θ = (1/2, 1/3, 1/3, 1/2):

w = −
s(s + 1)(s − 3)2

3(s + 3)(s − 1)2
, t = −

(s + 1)3(s − 3)3

(s − 1)3(s + 3)3
,

first found in [8], equivalent to solution 4.1.1A; in the above form in [22], tetrahedral solution 6, p. 9.
Solution 4, 6 branches, θ = (1/2, 1/4, 1/2, 2/3):

w =
9s(2s3 − 3s + 4)

4(s + 1)(s − 1)2(2s2 + 6s + 1)
, t =

27s2

4(s2 − 1)3
,

octahedral solution 7 in [22], p. 12.
Solution 5, 6 branches, θ = (1/4, 1/4, 1/3, 1/3):

w =
(3s − 1)(2s − 1)(s + 1)3

4s(3s2 − 1)(s2 + 1)
, t =

(s + 1)4(2s − 1)2

8s3(3s2 − 1)
,

first found in [9] 3.3.3, p. 22.
Solution 6, 6 branches, θ = (2/5, 1/5, 2/5, 2/3):

w =
18s(s − 3)

(s − 4)(s + 1)(s2 + 5)
, t =

432s
(s + 5)(s + 1)3(s − 4)2

,

solution 23 in [21], p. 23.
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Solution 7, 6 branches, θ = (1/5, 2/5, 1/5, 1/3):

w =
−54s(s − 7)

(s − 4)(s + 1)(s4 − 20s2 − 35)
, t = t6,

solution 22 in [21], p. 23.
Solution 8, 7 branches, θ = (2/7, 2/7, 2/7, 4/7):

w = −
(5s2 − 8s + 5)(7s2 − 7s + 4)

s(s − 2)(s + 1)(2s − 1)(4s2 − 7s + 7)
, t =

(7s2 − 7s + 4)2

s3(4s2 − 7s + 7)2
.

Klein solution of [7], p. 26.
Solution 9, 8 branches, θ = (1/4, 1/2, 1/4, 1/2):

w = −
(s2 − 2s + 2)(s2 + 2)2

4(s + 1)(s2 − 4s − 2)(s − 1)2
, t =

(s2 − 2)(s2 + 2)3

16(s + 1)3(s − 1)3
,

first found in [9] 3.3.5, p. 23.
Solution 10, 8 branches, θ = (1/3, 1/2, 1/4, 2/3):

w =
s3(2s2 − 4s + 3)(s2 − 2s + 2)
(2s2 − 2s + 1)(3s2 − 4s + 2)

, t =


s2(2s2 − 4s + 3)
3s2 − 4s + 2

2

,

octahedral solution 9 in [22], p. 12.
Solution 11, 8 branches, θ = (1/2, 1/5, 2/5, 4/5):

w =
s(s + 4)(3s4 − 2s3 − 2s2 + 8s + 8)

8(s − 1)(s + 1)2(s2 + 4)
, t =

s5(s + 4)3

4(s − 1)(s + 1)3(s2 + 4)2
,

solution 24 in [21], p. 21.
Solution 12, 8 branches, θ = (2/5, 1/2, 2/5, 4/5):

w =
s2(s + 4)2(5s3 + 2s2 − 4s − 8)

4(s − 1)(s + 1)2(s2 + 4)(s2 + 3s + 6)
, t = t11,

solution 25 in [21], p. 21.
Solution 13, 9 branches, θ = (2/5, 2/5, 2/5, 2/3):

w =
1
2

+
350s3 + 63s2 − 6s − 2

30s(2s + 1)u
,

t =
1
2

+
(25s4 + 170s3 + 42s2 + 8s − 2)u

54s3(5s + 4)2
,

u2
= s(8s + 1)(5s + 4),

solution 27 in [21], p. 23 (parameters in [21] are defined with a misprint, which is corrected by interchanging θ3 ↔ θ4).
Solution 14, 9 branches, θ = (1/5, 1/5, 1/5, 1/3):

w =
1
2

−
(s − 1)


5(s6 + 1)+ 58(s5 + s)+ 1771(s4 + s2)+ 8620s3


u

8s(s + 1)(5s3 + 25s2 + 95s + 3)(3s3 + 95s2 + 25s + 5)
,

t =
1
2

−
(s − 1)


25(s8 + 1)+ 760(s7 + s)+ 4924(s6 + s2)+ 75464(s5 + s3)+ 329174s4)

2048s(s + 1)5u
,

u2
= s(5s2 + 118s + 5),

first found in [9], p. 11.



158 O. Lisovyy, Y. Tykhyy / Journal of Geometry and Physics 85 (2014) 124–163

Solution 15, 10 branches, θ = (1/2, 1/5, 1/2, 3/5):

w =
(s2 − 5)(s2 + 5)(s5 + 5s4 − 20s3 + 75s + 75)
(s + 1)2(s + 5)(s2 − 4s + 5)(s4 + 6s2 − 75)

,

t =
2(s2 + 5)3(s2 − 5)2

(s + 1)3(s + 5)3(s2 − 4s + 5)2
,

solution 28 in [21], p. 21.
Solution 16, 10 branches, θ = (0, 0, 0,−4/5):

w =
(s − 1)2(3s + 1)2(s2 + 4s − 1)(119s8 − 588s6 + 314s4 − 108s2 + 7)2

(s + 1)3(3s − 1)P(s)
,

t =
(s − 1)5(3s + 1)3(s2 + 4s − 1)
(s + 1)5(3s − 1)3(s2 − 4s − 1)

,

P(s) = 42483s18 − 719271s16 + 5963724s14 + 13758708s12 − 7616646s10 + 1642878s8 − 259044s6

+ 34308s4 − 2133s2 + 49,

first obtained in [4], the above parametrization corresponds to icosahedron solution (H3) in [5], p. 76.
Solution 17, 10 branches, θ = (0, 0, 0,−2/5):

w =
(s − 1)4(3s + 1)2(s2 + 4s − 1)(11s4 − 30s2 + 3)2

(s + 1)(3s − 1)(3s2 + 1)P(s)
,

t =
(s − 1)5(3s + 1)3(s2 + 4s − 1)
(s + 1)5(3s − 1)3(s2 − 4s − 1)

,

P(s) = 121s12 − 1942s10 + 63015s8 − 28852s6 + 4855s4 − 342s2 + 9,

great icosahedron solution (H3)′ in [5], p. 77.
Solution 18, 10 branches, θ = (1/3, 1/3, 1/3, 4/5):

w =
s2(s + 2)(s2 + 1)(2s2 + 3s + 3)
2(s2 + s + 1)(3s2 + 3s + 2)

, t =
s5(s + 2)(2s2 + 3s + 3)2

(2s + 1)(3s2 + 3s + 2)2
,

solution 29 in [21], p. 23.
Solution 19, 10 branches, θ = (1/3, 1/3, 1/3, 2/5):

w =
s4(s + 2)(2s2 + 3s + 3)(7s2 + 10s + 7)

(3s2 + 3s + 2)

4(s6 + 1)+ 12(s5 + s)+ 15(s4 + s2)+ 10s3

 , t = t18,

solution 30 in [21], p. 23.
Solution 20, 12 branches, θ = (1/2, 1/2, 1/2, 2/3):

w =
1
2

+
45s6 + 20s5 + 95s4 + 92s3 + 39s2 − 3

4(5s2 + 1)(s + 1)2u
,

t =
1
2

+
s(2s + 1)2(27s4 + 28s3 + 26s2 + 12s + 3)

(s + 1)3u3
,

u2
= (2s + 1)(9s2 + 2s + 1),

octahedral solution 12 in [22], p. 13.
Solution 21, 12 branches, θ = (1/3, 1/2, 1/2, 2/3):

w =
4(s + 1)(3s2 − 4s + 2)(7s4 + 16s3 + 4s2 − 4)
s3(s − 2)(s2 + 4s + 6)(s4 − 4s2 + 32s − 28)

,

t =
16(s + 1)4(3s2 − 4s + 2)2

s4(s − 2)4(s2 + 4s + 6)2
,

octahedral solution 11 in [22], p. 12.
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Solution 22, 12 branches, θ = (1/3, 1/3, 1/5, 2/5):

w =
1
2

+
140s6 + 1029s5 − 1023s4 + 360s3 − 288s2 + 27s + 27

18u(s + 1)(7s3 − 3s2 − s + 1)
,

t =
1
2

+
40s6 + 540s5 − 765s4 + 540s3 − 270s2 + 27

6u(8s2 − 9s + 3)(s + 1)2
,

u2
= 3(5s + 1)(8s2 − 9s + 3),

solution 36 in [21], p. 22.
Solution 23, 12 branches, θ = (1/5, 1/5, 1/3, 1/2):

w =
1
2

+
(3s + 5)(8s4 − 10s3 + 12s2 − 13s + 11)

2(2s3 − 15s + 5)u
,

t =
1
2

−
8s6 + 20s3 − 15s2 + 66s − 15

2(8s2 − 5s + 5)u
,

u2
= (3s + 5)(8s2 − 5s + 5),

solution 34 in [21], p. 21.
Solution 24, 12 branches, θ = (2/5, 2/5, 1/3, 1/2):

w =
1
2

−
(3s + 5)(16s5 − 8s4 + 18s3 − 8s2 + 115s + 3)

2(26s3 + 60s2 + 15s + 35)u
,

t = t23, u = u23,

solution 35 in [21], p. 22 (in [21] there is a sign misprint in the formula forw).
Solution 25, 12 branches, θ = (2/5, 1/3, 1/2, 4/5):

w = −
9s(s2 + 1)(3s − 4)(15s4 − 5s3 + 3s2 − 3s + 2)

(2s − 1)2(9s2 + 4)(9s2 + 3s + 10)
,

t =
27s5(s2 + 1)2(3s − 4)3

4(2s − 1)3(9s2 + 4)2
,

solution 33 (generic icosahedral solution) in [21], Th. B, p. 4.
Solution 26, 15 branches, θ = (1/3, 1/3, 1/3, 3/5):

w =
1
2

−
250s6 + 500s5 + 518s4 + 261s3 + 76s2 + 13s + 2

2(s + 2)(5s + 1)(5s3 + 6s2 + 3s + 1)u
,

t =
1
2

−
3(500s7 + 925s6 + 1164s5 + 830s4 + 340s3 + 105s2 + 20s + 4)

2(s + 2)2(5s + 1)u3
,

u2
= (4s2 + s + 1)(5s + 1),

solution 38 in [21], p. 26.
Solution 27, 15 branches, θ = (1/3, 1/3, 1/3, 1/5):

w =
1
2

−
1000s8 + 2425s7 + 4171s6 + 3805s5 + 1999s4 + 874s3 + 244s2 + 58s + 4

4(s + 2)(25s6 + 135s5 + 111s4 + 91s3 + 36s2 + 6s + 1)u
,

t = t26, u = u26,

solution 37 in [21], p. 26.
Solution 28, 15 branches, θ = (3/5, 3/5, 2/3, 2/3):

w =
1
2

−
2s9 + 20s8 + 53s7 − 89s6 − 605s5 − 851s4 − 1389s3 − 5775s2 − 10125s − 5625

2(s2 − 5)(s2 − 6s − 15)(s2 + 4s + 5)u
,

t =
1
2

−
(2s7 + 10s6 − 90s4 − 135s3 + 297s2 + 945s + 675)u

18(4s2 + 15s + 15)2(s2 − 5)
,

u2
= 3(s + 5)(4s2 + 15s + 15),

solution 40 in [21], p. 22.
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Solution 29, 15 branches, θ = (1/3, 1/3, 4/5, 4/5):

w =
1
2

+
14s5 + 61s4 − 66s3 − 660s2 − 900s − 225

6(s + 1)(s2 − 5)u
,

t = t28, u = u28,

solution 39 in [21], p. 22.
Solution 30, 16 branches, θ = (1/2, 1/2, 1/2, 3/4):

w = −
(1 + i)(s2 − 1)(s2 + 2is + 1)(s2 − 2is + 1)2P(s)

4s(s2 + i)(s2 − i)2(s2 + (1 + i)s − i)Q (s)
,

t =
(s2 − 1)2(s4 + 6s2 + 1)3

32s2(s4 + 1)3
,

P(s) = s8 − (2 − 2i)s7 − (6 + 2i)s6 + (10 + 2i)s5 + 4is4 + (10 − 2i)s3 + (6 − 2i)s2 − (2 + 2i)s − 1,

Q (s) = s6 − (3 + 3i)s5 + 3is4 + (4 − 4i)s3 + 3s2 + (3 + 3i)s + i,

octahedral solution 13 in [22], p. 13.
Solution 31, 18 branches, θ = (1/3, 1/3, 1/3, 1/3):

w =
1
2

−
8s7 − 28s6 + 75s5 + 31s4 − 269s3 + 318s2 − 166s + 56

18u(s − 1)(3s3 − 4s2 + 4s + 2)
,

t =
1
2

+
(s + 1)


32(s8 + 1)− 320(s7 + s)+ 1112(s6 + s2)− 2420(s5 + s3)+ 3167s4


54u3s(s − 1)

,

u2
= s(8s2 − 11s + 8).

A solution with equivalent parameters was first obtained in [5] (great dodecahedron solution (H3)′′, see pp. 78–87 in the
preprint version of [5] for the explicit form), the above elliptic parametrization was produced in [21], Th. C, p. 4.

Solution 32, 18 branches, θ = (4/7, 4/7, 4/7, 1/3):

w =
1
2

−
P(s)u
Q (s)

, t =
1
2

−
R(s)u

432s(s + 1)2(s2 + s + 7)2
, u2

= s(s2 + s + 7),

P(s) = s10 + 5s9 + 24s8 + 20s7 − 266s6 − 2874s5 − 14812s4 − 40316s3 − 85359s2 − 100067s − 67396,

Q (s) = 16(s + 1)(s2 + s + 7)(5s6 + 63s5 + 252s4 + 854s3 + 1449s2 + 1827s + 2030),

R(s) = s9 − 84s6 − 378s5 − 1512s4 − 5208s3 − 7236s2 − 8127s − 784,

first appeared in [22], p. 22.
Solution 33, 18 branches, θ = (1/3, 1/7/, 1/7, 6/7):

w = 1 +
(3s − 2)(s2 − 2s + 4)2

4(s + 2)(s − 1)2(s2 − s + 1)(3s2 − 4s + 4)

×
−14s5 + 25s4 − 20s3 − 8s2 + 16s − 8 − 8(s − 1)(s2 − s + 1)u

(2s + 1)(3s3 − 10s2 + 6s − 2)− 14(s − 1)u
,

t =
1
2

−
14s9 − 105s8 + 252s7 − 392s6 + 420s5 − 336s4 + 112s3 + 72s2 − 96s + 32

16(s + 2)2(s − 1)3(s2 − s + 1)u
,

u2
= (2s + 1)(1 − s)(s2 − s + 1),

solution (3.16)–(3.17) in [10], p. 15.
Solution 34, 18 branches, θ = (2/7, 2/7, 2/7, 1/3):

w =
1
2

−
(3s8 − 2s7 − 4s6 − 204s5 − 536s4 − 1738s3 − 5064s2 − 4808s − 3199)u

4(s + 1)(s2 + s + 7)(s6 + 196s3 + 189s2 + 756s + 154)
,

t = t32, u = u32,

first appeared in [22], p. 17, Eq. (12).
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Solution 35, 20 branches, θ = (0, 0, 1/10, 9/10):

w =
1
2

−
9s5 − 49s4 − 822s3 + 238s2 − 1699s + 1299

2(3s − 7)(s2 − 2s + 17)u
,

t =
1
2

−
P(s)

Q (s)u3
, u2

= (9s2 − 2s + 9)(s2 − 2s + 17)

P(s) = 27s10 − 630s9 + 4055s8 + 30520s7 − 174970s6 + 258492s5 − 724490s4

+ 600760s3 − 1097825s2 + 186570s − 131085,

Q (s) = 2(s2 − 2s + 17)(s2 − 18s + 1),

solution 45 of [21], first obtained explicitly in [23], p. 7.
Solution 36, 20 branches, θ = (0, 0, 3/10, 7/10):

w =
1
2

−
(s + 3)(9s4 − 100s3 + 118s2 − 228s − 55)

(6s3 − 42s2 − 30s − 62)u
,

t = t35, u = u35,

solution 44 of [21], first obtained explicitly in [23], p. 8.
Solution 37, 20 branches, θ = (1/3, 1/3, 1/2, 2/5):

w =
1
2

+
(s + 3)P(s)

18(s2 + 1)(s6 − 7s4 + 42s3 − 45s2 + 34s + 7)u
,

t =
1
2

−
(s + 3)Q (s)
2(s2 + 1)2u3

, u2
= 3(s + 3)(8s2 − 13s + 17),

P(s) = 28s9 − 235s8 + 556s7 − 1334s6 + 2174s5 − 3854s4 + 4360s3 − 4738s2 + 2362s − 1047,

Q (s) = 8s10 + 100s7 − 135s6 + 834s5 − 1205s4 + 2280s3 − 1365s2 + 890s + 321,

solution 43 in [21], p. 24.
Solution 38, 20 branches, θ = (1/3, 1/3, 1/2, 4/5):

w =
1
2

+
(s + 3)(8s6 − 28s5 + 85s4 − 196s3 + 214s2 − 196s + 41)

6(s2 + 1)(3s2 − 4s + 5)u
,

t = t37, u = u37,

solution 42 in [21], p. 24.
Solution 39, 24 branches, θ = (1/3, 1/3, 1/3, 1/2):

w =
1
2

−
P(s)
R(s)u

, t =
1
2

+
(s2 + 4s − 2)Q (s)

2(s + 2)(3s2 − 2s + 2)2u3
, u2

= (8s2 − 7s + 2)(s + 2),

P(s) = 16s11 + 72s10 + 50s9 − 242s8 − 3143s7 + 6562s6 − 8312s5 + 9760s4 − 9836s3

+ 6216s2 − 2288s + 416,

Q (s) = 8s10 + 16s9 + 24s8 − 84s7 + 429s6 − 312s5 + 258s4 − 288s3 + 288s2 − 128s + 32,

R(s) = 2(3s2 − 2s + 2)(26s6 + 18s5 − 75s4 + 50s3 + 270s2 − 312s + 104),

solution 46 in [21], p. 27.
Solution 40, 30 branches, θ = (1/15, 1/15, 7/30, 23/30):

w =
1
2

+
(s + 1)(s8 + 8s7 + 90s6 + 348s5 + 972s4 + 1296s3 + 4374s2 + 8748s + 19683)

2(s + 3)2(s4 − 4s3 − 6s2 + 81)u
,

t =
1
2

+
(s + 1)2(s + 9)2P(s)

2(s − 3)2(s + 3)5(s2 + 9)u3
, u2

= (s + 1)(s + 9)(s2 + 9)(s2 + 4s + 9),

P(s) = s14 + 10s13 + 63s12 + 180s11 + 621s10 + 3942s9 + 26595s8 + 99576s7 + 239355s6

+ 319302s5 + 452709s4 + 1180980s3 + 3720087s2 + 5314410s + 4782969,

solution 47 of [21], first obtained explicitly in [23], p. 9.
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Solution 41, 30 branches, θ = (2/15, 2/15, 1/30, 29/30):

w =
1
2

+
(s + 9)Q (s)

2(s − 3)(s + 3)4(s2 + 9)u
, t = t40, u = u40,

Q (s) = s9 + 7s8 + 36s7 + 36s6 + 126s5 + 1170s4 + 8100s3 + 18468s2 + 24057s − 6561,

solution 48 of [21], first obtained explicitly in [23], p. 9.
Solution 42, 36 branches, θ = (0, 0, 1/6, 5/6):

w =
1
2

−
4s9 − 24s8 + 84s7 − 240s6 + 96s5 + 1401s4 − 6396s3 + 11136s2 − 8160s − 401

2(2s2 − 2s + 5)(s3 − 3s2 + 3s − 11)u
,

t =
1
2

−
(s − 2)(s + 4)P(s)

4(s2 − 7s + 1)(s2 − 4s + 13)(2s2 − 2s + 5)u3
,

u2
= (s2 − 4s + 13)(2s2 − 2s + 5)(2s4 + 2s3 − 3s2 − 58s + 107),

P(s) = 32s16 − 640s15 + 6432s14 − 46016s13 + 266968s12 − 1228152s11 + 4546772s10

− 13723024s9 + 34628427s8 − 74456536s7 + 139564088s6 − 224784264s5

+ 300342142s4 − 299494736s3 + 197723868s2 − 68764168s + 17918807,

solution 49 of [21], first obtained explicitly in [23], p. 10.
Solution 43, 40 branches, θ = (3/20, 3/20, 3/20, 17/20):

w =
1
2

+
(s2 − 18s + 1)(s2 − 2s + 17) (u35)

2
+ 8(s + 1)(3s3 − 21s2 − 15s − 31)uv

32(s3 + 57s2 − 69s + 75)(s2 − 1)v
,

t =
1
2

+
P35(s)u

1024(s − 9)2(s2 − 1)3(5s2 − 2s + 13)
,

u2
= 2(s − 9)(s2 − 1), v2 = −(s − 1)(s − 9)(5s2 − 2s + 13),

solution 50 of [21], first obtained explicitly in [23], p. 9. (The formula (6) for v in [23], p. 8 is incorrect and should be replaced
with v2 = −2(j+ 1)(5j2 − 2j+ 13). This is undoubtedly a typing error, because the Maple file accompanying Arxiv version
of [23] contains correct expressions, which yield a solution equivalent to the above.)

Solution 44, 40 branches, θ = (1/20, 1/20, 1/20, 19/20):

w =
1
2

+
(s2 − 18s + 1) (u35)

2
+ 4(s − 1)(3s − 7)uv

64(s + 3)(s + 1)2v
,

t = t43, u = u43, v = v43,

solution 51 of [21], in explicit form first obtained in [23], p. 8 (with the same misprints as solution 43).
Solution 45, 72 branches, θ = (1/12, 1/12, 1/12, 11/12):

w =
1
2

+
2(s2 − 4s + 13)(s2 − 7s + 1) (u42)

2
+ 9(s − 1)(s3 + 27s2 − 57s + 79)uv

6(2s − 7)2(s2 − 1)(2s2 + s + 17)(s3 − 3s2 + 3s − 11)v
,

t =
1
2

+
(s − 2)(s + 4)P42(s)

54(2s − 7)(s2 − 1)(s2 − 2s + 6)u3
,

u2
= (2s − 7)(s2 − 1)(2s2 + s + 17)(4s2 − 13s + 19),

v2 = −(s + 1)(s2 − 2s + 6)(4s2 − 13s + 19),

solution 52 of [21], in explicit form first obtained in [23], pp. 10–11.
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